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เทคนิคการเรียนรู้ของเครื่องผ่านโมเดล YOLOv8 ซึ่งสามารถตรวจจับตำหนิของขวดได้อย่างแม่นยำและ
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ฝาและฉลาก เป็นต้น ส่งสัญญาณไปยัง Arduino เพื่อควบคุมกลไก Rejector ในการคัดแยกขวด ชิ้นงาน
เสีย ออกจากสายพานโดยอัตโนมัติ ข้อมูลที่ใช้ในการฝึกประกอบด้วยภาพรวม 25,00 ภาพ ที่ผ่านการทำ
การเพิ่มข้อมูล เพื่อเพิ่มความหลากหลาย โมเดลถูกฝึกใน Google Colab  โดยใช้ GPU Tesla T4 จำนวน 
100 Epoch และมีความแม่นยำเฉลี่ยสูงถึงร้อยละ 96.4 จากการประเมินด้วย Confusion Matrix การ
ทดสอบในระบบจริงแสดงให้เห็นว่าสามารถทำงานได้ด้วยความเร็ว 30–38 FPS ที่ Latency เฉลี่ย 40 
มิลลิวินาทีต่อเฟรม ซึ่งรองรับการทำงานของสายพานได้อย่างมีเสถียรภาพ ผลการประเมินความพึงพอใจ
ของผู้ใช้งานจริง 18 คน พบว่าผู้ใช้งานมีความพึงพอใจในระดับสูงมาก (ค่าเฉลี่ย 4.59 จาก 5.00 คะแนน) 
โดยเฉพาะด้านความคุ้มค่าและประสิทธิภาพการทำงาน ระบบที่พัฒนาขึ้นจึงถือว่ามีศักยภาพสูงในการ
นำไปประยุกต์ใช้จริงในโรงงานอุตสาหกรรม ด้วยต้นทุนรวมเพียง  46,450 บาท ซึ่งต่ำกว่าระบบ Vision 
Sensor เชิงพาณิชย์กว่า 7–10 เท่า และสามารถสนับสนุนแนวทางการพัฒนาอุตสาหกรรมไทยสู่ ยุค 
Industry 4.0 ได้อย่างมีประสิทธิภาพ 
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 บทคัดย่อภาษาอังกฤษ 

ABSTRACT 
This research aims to develop an automatic defective workpiece detection system 

on a Conveyor Belt using Machine Learning, integrating the YOLOv8 model for high-
accuracy, real-time defect detections of bottle. The system identifies bottle defects such 
as missing caps, missing labels, then sends control signals via Arduino to a pneumatic 
rejector for automatic defected bottle removal. A dataset of 25,00 images was used as 
trained dataset, followed by data augmentation to increase diversity. The model was 
trained in Google Colab using a Tesla T4 GPU for 100 epochs. The trained model achieved 
96.4% average accuracy. Real-time testing showed processing speeds of 30–38 FPS with 
average latency at 40 ms per frame, proving stable operation suitable for conveyor 
systems. 18 User satisfaction evaluation indicated a high satisfaction level (mean value at 
4.59 from 5.00), particularly in cost-effectiveness and operational performance. The 
developed system is therefore considered to have high potential for practical application 
in industrial factories, with a total cost of only 46,450 baht, which is 7–10 times lower than 
commercial Vision Sensor systems. This research provides a practical solution for 
intelligent quality inspection and contributes to advancing Industry 4.0 manufacturing in 
Thailand. 
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กิตติกรรมประกาศ  
 

งานวิจัยเรื่อง “ระบบตรวจจับชิ้นงานเสียบนสายพานลำเลียงอัตโนมัติด้วยการเรียนรู้ของ
เครื่อง” ฉบับนี้ สำเร็จลุล่วงได้ด้วยความกรุณาและการสนับสนุนจากหลายฝ่าย ซึ่งผู้วิจัยขอกราบ
ขอบพระคุณเป็นอย่างสูงต่อ รองศาสตราจารย์ ดร.นลินภัสร์ บำเพ็ญเพียร อาจารย์ที่ปรึกษาการ
ค้นคว้าอิสระ คณะเทคโนโลยีสารสนเทศและนวัตกรรมดิจิทัล  มหาวิทยาลัยเทคโนโลยีพระจอม
เกล้าพระนครเหนือ ที่ได้กรุณาให้คำแนะนำ คำปรึกษา และข้อเสนอแนะอันทรงคุณค่าในทุก
ขั้นตอนของการดำเนินงาน ตลอดจนเป็นแบบอย่างของความเป็นนักวิจัยที่มีความรู้ ความสามารถ 
และความมุ่งมั่น ซึ่งเป็นแรงบันดาลใจสำคัญที่ทำให้งานวิจัยฉบับนี้สำเร็จลุล่วงอย่างสมบูรณ์ 

ผู้วิจัยขอขอบพระคุณ คณาจารย์ทุกท่านในคณะเทคโนโลยีสารสนเทศและนวัตกรรมดิจิทัล 
มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ ที่ได้มอบความรู้ แนวทางทางวิชาการ และ
คำแนะนำอันเป็นประโยชน์ตลอดระยะเวลาการศึกษา ตลอดจนให้การสนับสนุนอุปกรณ์ เครื่องมือ 
และสถานที่ในการดำเนินงานวิจัยอย่างครบถ้วน 

ขอขอบคุณ เพื่อนนักศึกษาร่วมรุ่น สาขาเทคโนโลยีสารสนเทศและนวัตกรรมดิจิทัล ที่ได้
ร่วมกันแลกเปลี่ยนความรู้และความคิดเห็น ให้ความช่วยเหลือทั้งในด้านเทคนิคและการดำเนินงาน
วิจัย รวมถึงให้กำลังใจในทุกช่วงเวลาของการศึกษา ความร่วมมือและมิตรภาพจากเพ่ือนร่วมรุ่นทุก
คนถือเป็นแรงผลักดันสำคัญท่ีทำให้ผู้วิจัยสามารถฝ่าฟันอุปสรรคและพัฒนาผลงานนี้จนสำเร็จได้ 
นอกจากนี้ ผู้วิจัยขอขอบคุณ บุคลากรจากภาคอุตสาหกรรม ที่ให้คำปรึกษา แนะนำการออกแบบ
ระบบ และเปิดโอกาสให้ทดสอบระบบจริงในสภาวะแวดล้อมการผลิต ซึ่งช่วยให้การพัฒนาระบบ
ตรวจจับชิ้นงานเสียมีความสมบูรณ์และสอดคล้องกับการใช้งานจริงในอุตสาหกรรมมากยิ่งขึ้น 

สุดท้ายนี้ ผู้วิจัยขอกราบขอบพระคุณ บิดา มารดา และครอบครัว ที่เป็นแรงสนับสนุนทางใจ
ที่สำคัญที่สุด คอยให้กำลังใจ ความเข้าใจ และแรงผลักดันในทุกช่วงของการศึกษาและการทำงาน
วิจัย หากปราศจากแรงสนับสนุนจากครอบครัว งานวิจัยฉบับนี้คงไม่สามารถสำเร็จลุล่วงได้ 

ผู ้ว ิจ ัยหวังเป็นอย่างยิ ่งว ่า งานวิจัยฉบับนี ้จะเป็นประโยชน์ต่อวงการการศึกษาและ
ภาคอุตสาหกรรม โดยเฉพาะในการนำเทคโนโลยีปัญญาประดิษฐ์และการเรียนรู้ของเครื่องมา
ประยุกต์ใช้เพื ่อยกระดับระบบควบคุมคุณภาพในสายการผลิต ให้สอดคล้องกับแนวทางของ  
อุตสาหกรรม 4.0 (Industry 4.0) ซึ่งจะช่วยส่งเสริมศักยภาพของอุตสาหกรรมไทยให้ก้าวสู่ความ
ยั่งยืนในอนาคต 
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บทท่ี 1  

บทนำ 

1.1  ความเป็นมาและความสำคัญของปัญหา 
การก้าวเข้าสู่ยุคการปฏิวัติอุตสาหกรรมครั้งที่สี่ ( Industry 4.0) ได้ยกระดับมาตรฐานการผลิต

สมัยใหม่ให้เป็น การผลิตแบบอัจฉริยะ (Smart Manufacturing) ที่ยืดหยุ่น มีประสิทธิภาพ และ
เชื่อมโยงข้อมูลแบบครบวงจรตลอดสายการผลิต [1, 2] หนึ่งในเสาหลักที ่สำคัญคือ การควบคุม
คุณภาพ (Quality Control) ซึ่งต้องดำเนินไปอย่างรวดเร็วและแม่นยำ เพื่อให้อัตราข้อบกพร่องใกล้
ศูนย์มากที่สุด โดยเฉพาะในโรงงานที่ใช้ ระบบสายพานลำเลียง (Conveyor Belt) การตรวจสอบ
คุณภาพเป็นทั้งขั้นตอนสำคัญและเปราะบาง เพราะชิ้นงานเคลื่อนที่ต่อเนื่องและรวดเร็ว หากยังพ่ึงพา
การตรวจด้วยสายตามนุษย์ ย่อมเผชิญข้อจำกัดด้านความเหนื่อยล้า ความแปรปรวนในการตัดสินใจ 
ส่งผลให้เกิดความผิดพลาดและความไม่สม่ำเสมอของคุณภาพ [3] 

ควบคู่กับแรงกดดันของ Industry 4.0 นวัตกรรมด้าน ปัญญาประดิษฐ์ (AI) โดยเฉพาะการ
เรียนรู้เชิงลึก (Deep Learning) ได้เติบโตอย่างก้าวกระโดดและกลายเป็นคำตอบเชิงเทคโนโลยีที่มี
ศักยภาพสำหรับงานตรวจสอบคุณภาพ [4] ระบบวิชั่นอุตสาหกรรม (Industrial Vision System) ที่
ผสาน Deep Learning สามารถเรียนรู้คุณลักษณะของตำหนิจากข้อมูลจริง โดยไม่ต้องออกแบบตัว
บ่งชี้ภาพล่วงหน้าเหมือนแนวทางเดิม [4] จุดเปลี่ยนสำคัญคือ การตรวจจับวัตถุ (Object Detection) 
ซึ่งระบุตำแหน่ง (Bounding Box) และจำแนกชนิดตำหนิได้พร้อมกัน อัลกอริทึมตระกูล YOLO (You 
Only Look Once) ถูกออกแบบมาเพ่ือรองรับการประมวลผลแบบเรียลไทม์ ให้เฟรมต่อวินาที (FPS) 
สูง เหมาะอย่างยิ่งกับสายพานที่ชิ้นงานเคลื่อนที่ไม่หยุด  [5, 6, 7, 8, 9] อีกทั้งการเลือกใช้โมเดลที่
กะท ัดร ัดแต ่ม ีประส ิทธ ิภาพ เช ่น  YOLOv8 ย ังเอ ื ้อต ่อการต ิดต ั ้ งบน  อุปกรณ์เอดจ ์/ฝ ังตัว 
(Edge/Embedded Devices) ใกล ้จ ุดกำเน ิดข ้อม ูล ช ่วยลดความหน่วง (Latency) และเพ่ิม
เสถียรภาพของระบบโดยรวม [10, 11] 

บนภูมิหลังดังกล่าว งานวิจัยนี้มุ่ง ออกแบบและพัฒนาระบบต้นแบบสำหรับตรวจจับชิ้นงาน
เสียบนสายพานลำเลียงโดยใช้การเรียนรู้ของเครื่อง โดยบูรณาการ Deep Learning ให้สอดคล้องกับ
ข้อจำกัดและบริบทหน้างานจริง ขั้นตอนสำคัญประกอบด้วย  การรวบรวมและจัดเตรียมภาพขวด
พลาสติกท่ีมีตำหนิจริง การฝึกโมเดล YOLOv8 เพ่ือให้ตรวจจับตำหนิเฉพาะอย่างได้อย่างแม่นยำ และ 
การติดตั้งใช้งานบนสายพานขนาดกะทัดรัด เพื่อสั่งงาน กลไกคัดทิ้ง (Rejector) อย่างอัตโนมัติแบบ
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เรียลไทม์ เป้าหมายปลายทางคือการลดภาระของแรงงานมนุษย์ เพ่ิมความสม่ำเสมอของคุณภาพ และ
ยกระดับประสิทธิภาพของกระบวนการผลิต 

คุณูปการหลัก ของงานประกอบด้วยสองมิติสำคัญ มิติแรกคือ องค์ความรู้และกระบวนงานเชิง
ระบบ ที่ครอบคลุมตั้งแต่การได้มาซึ่งข้อมูล การฝึกและประเมินโมเดล ไปจนถึงการปรับใช้บนอุปกรณ์
เอดจ์ในโรงงานจริง ซึ่งสามารถใช้เป็นกรอบอ้างอิงและต้นแบบสำหรับงานตรวจจับวัตถุแบบเรียลไทม์
ในภาคอุตสาหกรรม มิติที่สองคือ ผลเชิงประยุกต์ ในรูปของระบบต้นแบบที่ทำงานได้จริง ช่วยลด
ความผันผวนจากการตรวจด้วยมนุษย์ ลดข้อบกพร่อง และเป็นฐานให้โรงงานสามารถขยายผลต่อยอด 
เพ่ือยกระดับมาตรฐานการควบคุมคุณภาพให้ทัดเทียมสากลภายใต้บริบทของ Industry 4.0 
 

1.2  วัตถุประสงค์ของการวิจัย 

1.2.1 เพื่อพัฒนาโมเดลการเรียนรู้ของเครื่อง (Machine Learning Model) สำหรับการจำแนก
ชิ้นงานดีและชิ้นงานเสียประเภทต่างๆ 

1.2.2 เพ่ือพัฒนาระบบตรวจจับชิ้นงาน (ขวดพลาสติก) บนสายพานลำเลียงโดยใช้กล้องเว็บแคม
ร่วมกับการประมวลผลภาพ 

 

1.3  ขอบเขตของการวิจัย 

การวิจัยครั้งนี้กำหนดขอบเขตอย่างชัดเจนเพื่อให้การพัฒนาและการประเมินผล “วัดได้ –
ทวนซ้ำได้” ในบริบทเชิงวิศวกรรมของสายพานอุตสาหกรรม โดยมุ่งพัฒนาระบบตรวจจับชิ้นงานเสีย
แบบเรียลไทม์ที่เชื่อมครบตั้งแต่การได้มาซึ่งข้อมูลภาพ การอนุมานด้วยแบบจำลอง ไปจนถึงการ
สั่งงานกลไกคัดทิ้งอย่างแม่นยำภายใต้ข้อจำกัดด้านเวลาแฝงและสภาวะหน้างานจริง [12] 

ในด้านชิ้นงานและข้อมูล งานมุ่งที่ขวดพลาสติกบนสายพานลำเลียง และจำกัดชนิดความ
เสียหายหลักที่ต้องตรวจจับให้อยู่ในกรอบที่ควบคุมได้ ได้แก่ ขวดไม่มีฝาปิด (Missing Cap) ขวดไม่มี
ฉลาก (Missing Label) และ ตำหนิของตัวภาชนะ เพื่อให้แบบจำลองเรียนรู้ลักษณะเฉพาะได้ลึกและ
ตรงเป้า ชุดข้อมูลรวบรวมจากสภาพจริงภายใต้ความหลากหลายของแสงและความเร็วสายพาน 
พร้อมทำ Annotation [13] ตามมาตรฐานสำหรับอัลกอริทึมตรวจจับวัตถุ และขยายข้อมูล (Data 
Augmentation) [14, 15] เพื่อเพิ่มความครอบคลุม ก่อให้เกิดฐานข้อมูลราว  25,000 ภาพ ซึ่งถูก
แบ่งเป็น Train/Validation/Test [16] ด้วยสัดส่วนคงท่ี เพื่อใช้ประเมินผลข้อมูล 

ในด้านเทคนิค Deep Learning งานกำหนดปัญหาเป็น Object Detection โดยเลือกใช้
ตระกูล YOLOv8 เพื ่อให้สมดุลระหว่างความแม่นยำและเวลาอนุมาน ขอบเขตการประเมิน
แบบจำลองใช้ตัวชี้วัดมาตรฐาน ได้แก่ mAP (เช่น mAP@0.5 และ/หรือ mAP@0.5:0.95) [17, 18] 



 

 

 

3 

 

 

ควบคู่กับ Precision–Recall–F1 Score เพ่ือสะท้อนสมดุลของการตัดสินใจในบริบทจริง การตั้งค่าที่
อยู่ในขอบเขตรวมถึง ความละเอียดอินพุต ค่าเกณฑ์ความเชื่อมั่น (Confidence Threshold) และ ค่า 
IoU  

ในด้านฮาร์ดแวร์และสภาพแวดล้อม ระบบต้นแบบถูกทดสอบบน สายพานลำเลียงจำลอง ที่
กำหนด ความเร็วสูงสุดไม่เกิน 3 เมตรต่อวินาที [19, 20] คอมพิวเตอร์ประสิทธิภาพสูงที่มี GPU [21, 
22, 23] เพื่อรองรับอัตราเฟรมตามเป้าหมาย การสั่งคัดทิ้งใช้ โซลินอยด์แอคชูเอเตอร์ (Rejector) 
ควบคุมผ่าน Arduino ที่สื่อสารกับคอมพิวเตอร์ด้วย USB3 [24, 25] 
 

1.4  ประโยชน์ที่ได้รับ 

1.4.1  เพ่ิมประสิทธิภาพและความรวดเร็วในกระบวนการผลิต 
ระบบสามารถทำงานตรวจสอบได้อย่างต่อเนื ่องตลอด 24 ชั ่วโมง โดยไม่ล้าและไม่สะดุด 

รองรับอัตราการไหลของชิ้นงานที่สูงกว่าการตรวจด้วยสายตามนุษย์อย่างมีนัยสำคัญ ส่งผลให้  กําลัง
การผลิตรวมเพ่ิมข้ึน และลดคอขวดในสถานีตรวจสอบคุณภาพ [26, 27] 

1.4.2  เพ่ิมความแม่นยำและสร้างมาตรฐานในการควบคุมคุณภาพ  
การประยุกต์ใช้ Machine Learning ช่วยลดความผิดพลาดจากความเหนื่อยล้าและความ

แปรปรวนของการตัดสินใจของพนักงาน ทำให้การคัดแยกชิ ้นงานเสียมี ความแม่นยำและความ
สม่ำเสมอสูง สามารถกำหนดมาตรฐานเดียวกันให้กับทุกชิ้นส่วนและทุกกะการผลิต [28, 29, 30] 

1.4.3  ลดต้นทุนการผลิตในระยะยาว 
เมื่อความผิดพลาดลดลง จะลด ต้นทุนของเสีย (Scrap/Rework) ลดความเสี่ยงการเรียกคืน

สินค้า (Product Recall) และลดภาระค่าแรงในงานตรวจสอบด้วยสายตา (Manual Inspection) ใน
ภาพรวมต้นทุนต่อหน่วยลดลง และ คืนทุนการลงทุนยาว [18], [27], [29, 30] 

1.4.4  ได้รับข้อมูลเชิงลึกเพ่ือพัฒนาสายการผลิต 
ระบบสามารถบันทึกสถิติลักษณะและจำนวนชิ้นงานเสีย พร้อมเวลาและเงื่อนไขหน้างานที่

เกี่ยวข้อง ข้อมูลดังกล่าวช่วยให้สามารถทำ วิเคราะห์หาสาเหตุ (RCA) ระบุจุดอ่อนของกระบวนการ 
และออกแบบมาตรการลดของเสียอย่างเฉพาะเจาะจง นำไปสู่ การปรับปรุงกระบวนการอย่างต่อเนื่อง 
(Continuous Improvement) [28], [31, 32] 
 



 

 

 

 

 

บทท่ี 2 

ทฤษฎีและงานวิจัยที่เกีย่วข้อง 

 
การวิจัยนี้มุ่งศึกษาเกี่ยวกับระบบตรวจจับชิ้นงานเสียบนสายพานลำเลียงอัตโนมัติด้วยการ

เรียนรู้ของเครื่อง โดยใช้สถาปัตยกรรม YOLOv8 ประมวลผลภาพจาก Webcam แบบเรียลไทม์ และ
เชื่อมผลการตัดสินใจผ่าน Arduino ไปยังกระบวนการคัดทิ้ง (Rejector) อัตโนมัติ พร้อมประเมิน
สมรรถนะด้วยตัวชี้วัดมาตรฐาน (Precision, Recall, F1-score และ mAP) เพ่ือยืนยันความพร้อม 
ในบทนี้ครอบคลุมสาระดังต่อไปนี้ 
 2.1 แนวคิดและทฤษฎีพ้ืนฐานด้านการประมวลผลภาพ (Image Processing) 
 2.2 การเรียนรู้ของเครื่องและโครงข่ายประสาทเทียม (Machine Learning & ANN) 
 2.3 ประเภทของการเรียนรู้ของเครื่อง (Supervised / Unsupervised / Reinforcement) 
 2.4 โครงข่ายประสาทเทียม (Artificial Neural Networks, ANN) 
 2.5 โครงข่ายประสาทเทียมเชิงลึกและคอนโวลูชัน (Deep Neural Networks & CNN) 
 2.6 สถาปัตยกรรม YOLO และพัฒนาการของแต่ละรุ่น 
 2.7 การวัดประสิทธิภาพของโมเดลเชิงคณิตศาสตร์ (Accuracy, Precision, Recall, F1, 
mAP, IoU) 
 2.8 งานวิจัยที่เกี่ยวข้องและข้อเปรียบเทียบกับงานนี้ 
 
2.1  แนวคิดและทฤษฎีพื้นฐานด้านการประมวลผลภาพ  

การประมวลผลภาพ (Image Processing) เป็นศาสตร์แขนงหนึ่งของวิทยาการคอมพิวเตอร์ที่มี
ความสำคัญอย่างยิ่งต่อการพัฒนาระบบอัจฉริยะ โดยเฉพาะในยุคปัจจุบันที่ข้อมูลส่วนใหญ่ที่มนุษย์
รับรู้มาจากการมองเห็น การทำให้คอมพิวเตอร์สามารถตีความและเข้าใจภาพได้ จึงเป็นรากฐานสำคัญ
ของระบบวิชวลอินสเปกชัน (Visual Inspection) ในภาคอุตสาหกรรม การประมวลผลภาพสามารถ
แบ่งออกได้เป็นหลายระดับ ตั้งแต่ระดับพื้นฐานไปจนถึงระดับสูง [1, 33] ดังนี้  

2.1.1  การประมวลผลภาพเชิงต่ำ (Low-Level Processing) 
การประมวลผลภาพในระดับนี้หมายถึงการปรับปรุงคุณภาพของภาพ เช่น การปรับความสว่าง 

(Brightness Adjustment) การปรับความคมชัด (Sharpening) และการลดสัญญาณรบกวน (Noise 
Reduction) ตัวอย่างเช่น หากภาพที่ได้จากกล้อง Webcam มีแสงน้อยจนไม่สามารถมองเห็นตำหนิ
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ได้ชัดเจน การประมวลผลภาพเชิงต่ำสามารถเพิ่มคุณภาพของภาพเพื่อให้โมเดลสามารถตรวจจับได้
แม่นยำยิ่งขึ้น [1] 

2.1.2  การประมวลผลภาพเชิงกลาง (Mid-Level Processing) 
ในระดับนี้เน้นไปที่การแยกแยะหรือดึงคุณลักษณะของวัตถุ เช่น การตรวจหาขอบภาพ (Edge 

Detection) การตรวจหามุม (Corner Detection) หรือการวิเคราะห์ Texture เทคนิคเหล่านี้ช่วยให้
คอมพิวเตอร์สามารถมองเห็นโครงร่างของวัตถุและแยกส่วนที่น่าสนใจออกจากพื้นหลังได้ เช่น การ
ตรวจสอบว่าขวดมีฝาปิดหรือไม่ อาจใช้การตรวจจับเส้นรอบวงด้านบนของขวด ซึ่งหากไม่มีฝาจะ
ปรากฏเป็นช่องว่างที่แตกต่างจากขวดสมบูรณ์ [34, 35] 

2.1.3  การประมวลผลภาพเชิงสูง (High-Level Processing) 
หมายถึงการตีความและทำความเข้าใจสิ่งที่อยู่ในภาพ ( Image Understanding) เช่น การ

จำแนกประเภท (Classification) และการตรวจจับวัตถุ (Object Detection) ซึ่งต้องอาศัยอัลกอริทึม
ที่ซับซ้อนและมักใช้การเรียนรู้ของเครื่องเข้ามาช่วย การประมวลผลภาพเชิงสูงจึงเป็นหัวใจของ
งานวิจัยนี้ เนื่องจากเป้าหมายคือการตรวจจับและจำแนกขวดที่มีตำหนิออกจากขวดที่สมบูรณ์ [36] 

2.1.4  ความสำคัญของการประมวลผลภาพในอุตสาหกรรม 
การตรวจสอบคุณภาพสินค้าในสายการผลิตเป็นขั้นตอนที่ไม่สามารถละเลยได้ โรงงานที่ผลิต

สินค้าวันละหลายหมื่นหรือหลายแสนชิ้นไม่สามารถพึ่งพาการตรวจสอบด้วยสายตามนุษย์ได้ทั้งหมด 
เพราะมีโอกาสเกิดความผิดพลาดสูง ข้อมูลจากรายงานของ International Society of Automation 
(ISA) ระบุว่ามนุษย์มีแนวโน้มตรวจจับข้อผิดพลาดตกหล่นมากกว่าร้อยละ 15 เมื ่อต้องทำงาน
ตรวจสอบต่อเนื่องนานกว่า 8 ชั่วโมง [37, 38] ดังนั้นการใช้ Computer Vision จึงเข้ามามีบทบาทใน
การทำงานแทนมนุษย์ โดยมีข้อดีคือทำงานได้รวดเร็วกว่าแม่นยำกว่า และไม่เหนื่อยล้า [1], [36] 

นอกจากนี้ การใช้ระบบอัตโนมัติยังสามารถบันทึกข้อมูลเพ่ือการวิเคราะห์ย้อนหลังได้ เช่น หาก
พบข้อร้องเร ียนจากลูกค้า โรงงานสามารถย้อนกลับไปตรวจสอบภาพของสินค้าที ่ออกจาก
สายการผลิตได้ ทำให้สามารถระบุสาเหตุของความผิดพลาดได้แม่นยำมากยิ่งขึ้น ซึ่งเป็นสิ่งที ่การ
ตรวจสอบด้วยมนุษย์ไม่สามารถทำได้ 

ข้อจำกัดของการประมวลผลภาพแบบดั้งเดิม 
แม้ว่าการประมวลผลภาพเชิงดั ้งเดิม (Traditional Image Processing) เช่น การตรวจจับ

ขอบภาพด้วย Sobel หรือ Canny Edge Detector จะเป็นเทคนิคที่ใช้มานาน แต่ก็มีข้อจำกัดหลาย
ประการ ได้แก่ 

2.1.4.1 ความไวต่อสภาพแสง เทคนิคดั้งเดิมมักทำงานได้ดีในสภาวะแสงคงที่ แต่เมื่อมี
แสงเงาหรือการสะท้อน ผลลัพธ์จะผิดพลาดทันที 
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2.1.4.2 ความซับซ้อนของวัตถุ หากตำหนิมีลักษณะใกล้เคียงกับชิ ้นงานที ่สมบูรณ์ 
อัลกอริทึมดั้งเดิมจะไม่สามารถแยกแยะได้ 

2.1.4.3 ความเร็วในการประมวลผล วิธีดั้งเดิมบางชนิดใช้เวลานานเกินไป ไม่เหมาะกับ
การทำงานแบบ Real-time [34, 35] 

2.1.5 การก้าวเข้าสู่ยุคของการเรียนรู้เชิงลึก 
เพื่อแก้ไขข้อจำกัดเหล่านี้ นักวิจัยได้หันมาใช้เทคนิค Deep Learning โดยเฉพาะโครงข่าย

ประสาทเท ียมแบบคอนโวล ูช ัน (Convolution Neural Networks, CNN) ซึ ่งสามารถเร ียนรู้
คุณลักษณะของภาพได้โดยตรงจากข้อมูลจำนวนมาก โดยไม่จำเป็นต้องดึงคุณลักษณะด้วยมือ 
(Hand-Crafted Features) ว ิธ ีน ี ้ช ่วยให ้สามารถตรวจจับตำหนิท ี ่ซ ับซ ้อนได ้ด ีกว ่า  [36], [39] 
ตัวอย่างเช่น หากต้องตรวจจับขวดที่ไม่มีฉลาก CNN สามารถเรียนรู้ได้จากข้อมูลภาพจำนวนมากว่า
พื้นที่ตรงกลางของขวดควรมีฉลาก และหากไม่พบลักษณะดังกล่าว โมเดลจะทำนายว่าเป็น Defect 
ได้อย่างแม่นยำ ต่างจากการใช้การตรวจจับสีหรือขอบเขตที่มักล้มเหลวเมื่อฉลากมีสีใกล้เคี ยงกับตัว
ขวด [36], [39, 40] 

2.1.6 การก้าวเข้าสู่ยุคของการเรียนรู้เชิงลึก 
เพื่อแก้ไขข้อจำกัดเหล่านี้ นักวิจัยได้หันมาใช้เทคนิค Deep Learning โดยเฉพาะโครงข่าย

ประสาทเทียมแบบคอนโวลูชัน (CNN) ซึ่งสามารถเรียนรู้คุณลักษณะของภาพได้โดยตรงจากข้อมูล
จำนวนมาก โดยไม่จำเป็นต้องดึงคุณลักษณะด้วยมือ (Hand-Crafted Features) วิธีนี้ช่วยให้สามารถ
ตรวจจับตำหนิที่ซับซ้อนได้ดีกว่า ตัวอย่างเช่น หากต้องตรวจจับขวดที่ไม่มีฉลาก CNN สามารถเรียนรู้
ได้จากข้อมูลภาพจำนวนมากว่าพื้นที่ตรงกลางของขวดควรมีฉลาก และหากไม่พบลักษณะดังกล่าว 
โมเดลจะทำนายว่าเป็น Defect ได้อย่างแม่นยำ ต่างจากการใช้การตรวจจับสีหรือขอบเขตที่มัก
ล้มเหลวเมื่อฉลากมีสีใกล้เคียงกับตัวขวด 
 
2.2 การเรียนรู้ของเครื่องและโครงข่ายประสาทเทียม  

การเรียนรู้ของเครื่อง (Machine Learning: ML) เป็นศาสตร์แขนงหนึ่งของปัญญาประดิษฐ์ 
(Artificial Intelligence: AI) ที่มุ่งเน้นให้คอมพิวเตอร์สามารถเรียนรู้จากข้อมูลและปรับปรุงสมรรถนะ
ได้โดยไม่จำเป็นต้องถูกกำหนดกฎเกณฑ์อย่างตายตัวโดยมนุษย์ หลักการสำคัญคือการใช้ข้อมูล (Data) 
และประสบการณ์ (Experience) เพื่อให้ระบบสามารถสร้างแบบจำลองทางคณิตศาสตร์ที่อธิบาย
ความสัมพันธ์ระหว่างสัญญาณเข้า (Input) และสัญญาณออก (Output) จากนั้นจึงนำไปใช้ทำนาย
ผลลัพธ์ใหม่ ๆ ที่ไม่เคยพบมาก่อน [41, 42] 

ในเชิงคณิตศาสตร์ การเรียนรู้ของเครื่องสามารถอธิบายได้ว่าเป็นการหาฟังก์ชัน f(x) ที่ใกล้เคียง
กับความสัมพันธ์จร ิงระหว่าง  Input x และ Output y มากที ่ส ุด โดยอาศัยกระบวนการปรับ
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ค่าพารามิเตอร์ภายในแบบจำลองเพื่อลดค่าความคลาดเคลื่อน (Error) ระหว่างค่าที่ทำนายได้และค่า
ความจริง (Ground Truth) [41, 42] 

 
2.3  ประเภทของการเรียนรู้ของเครื่อง 

การเรียนรู้ของเครื่องสามารถแบ่งออกได้เป็น 3 ประเภทหลัก ดังนี้ 
2.3.1  การเรียนรู้แบบมีผู้สอน (Supervised Learning)  
เป็นการเรียนรู้จากข้อมูลที ่มีการกำหนดฉลาก (Label) ไว้ล่วงหน้า เช่น ข้อมูลภาพขวดที่ 

Annotate แล้วว่า “มีฝา” หรือ “ไม่มีฝา” โมเดลจะเรียนรู้จากความสัมพันธ์ระหว่างภาพ ( Input) 
และฉลาก (Output) เพื่อนำไปทำนายข้อมูลใหม่ที่ไม่เคยเห็นมาก่อน วิธีนี้เป็นหัวใจของงานวิจัยใน
ครั้งนี้ เพราะผู้วิจัยได้ทำการ Label ภาพด้วย Roboflow อย่างเป็นระบบ [41, 42, 43] 

2.3.2  การเรียนรู้แบบไม่มีผู้สอน (Unsupervised Learning)  
ใช้กับข้อมูลที่ไม่มีการกำหนดฉลาก เช่น การจัดกลุ่ม (Clustering) โดยโมเดลจะพยายามหา

ความคล้ายคลึงของข้อมูลเอง เช่น หากให้โมเดลดูภาพขวดที่ไม่ได้ Annotate มันอาจจัดกลุ่มขวดที่มี
สีหรือรูปร่างใกล้เคียงกัน แม้ไม่รู้ว่ากลุ่มนั้นคือ Defect หรือไม่ การเรียนรู้ประเภทนี้มักใช้ในงานค้นหา
รูปแบบแฝง (Hidden Patterns) [41, 42] 

2.3.3  การเรียนรู้แบบเสริมกำลัง (Reinforcement Learning)  
เป็นการเรียนรู้ผ่านกระบวนการลองผิดลองถูก (Trial and Error) โดยระบบจะได้รับ “รางวัล” 

หรือ “บทลงโทษ” ตามพฤติกรรมที่แสดงออก เช่น หุ่นยนต์บนสายพานเรียนรู้ว่าหากคัดแยกขวด 
Defect ถูกต้องจะได้รางวัล หากผิดจะถูกปรับค่า ซึ่งแม้ไม่ได้ใช้โดยตรงในงานวิจัยนี้ แต่ก็มีบทบาทใน
งานวิจัยด้านหุ่นยนต์อุตสาหกรรม [44] 
 
2.4  โครงข่ายประสาทเทียม (Artificial Neural Networks, ANN)  

โครงข่ายประสาทเทียมเป็นแรงบันดาลใจมาจากสมองมนุษย์ โดยประกอบด้วยโหนด 
(Neuron) ที่เชื่อมต่อกันเป็นชั้น (Layer) แต่ละโหนดทำหน้าที่ประมวลผลข้อมูลและส่งต่อไปยังชั้น
ถัดไปผ่านการคูณน้ำหนัก (Weight) และการบวกค่าคงที่ (Bias) เมื่อผ่านฟังก์ชันกระตุ้น (Activation 
Function) เช่น Sigmoid, ReLU หรือ Tanh โมเดลก็สามารถสร้างความสัมพันธ์ที่ไม่เชิงเส้นระหว่าง
อินพุตและเอาต์พุตได้ [36], [45] 

ในอดีต ANN ที่มีชั้นน้อย (Shallow Neural Networks) สามารถแก้ปัญหาง่าย ๆ เช่น การ
จำแนกข้อมูลสองกลุ ่ม แต่ไม่สามารถแก้ปัญหาที่ซับซ้อนเช่นการจำแนกรูปภาพได้ เนื ่องจาก
ความสามารถในการดึงคุณลักษณะ (Feature Extraction) ยังจำกัด [36], [45] 
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2.5  โครงข่ายประสาทเทียมเชิงลึก (Deep Neural Networks, DNN) 
การมาถึงของ Deep Learning ทำให้ ANN พัฒนาเป็นโครงข่ายที่มีหลายชั้น (Deep Neural 

Networks) สามารถเรียนรู้คุณลักษณะเชิงลึกได้อย่างมีประสิทธิภาพ โดยเฉพาะโครงข่ายประสาท
เทียมแบบคอนโวลูชัน (Convolutional Neural Networks, CNN) ซึ่งถูกออกแบบมาเพ่ือประมวลผล
ข้อมูลภาพโดยตรง [36], [39] 

2.5.1  กระบวนการหลักของ CNN  
CNN ประกอบด้วย 3 กระบวนการหลัก คือ Convolution Layer, Pooling Layer และ Fully 

Connected Layer โดยกระบวนการ Convolution Layer ใช้ Kernel หรือ Filter สไลด์ไปบนภาพ
เพ่ือดึงคุณลักษณะ เช่น เส้นขอบ มุม หรือลายผิว (Texture) ส่วนกระบวนการ Pooling Layer มีเพ่ือ
ลดขนาดของข้อมูล (Downsampling) เช่น Max Pooling เพื ่อลดจำนวนการคำนวณแต่ย ังคง
คุณลักษณะสำคัญไว้ และสุดท้าย กระบวนการ Fully Connected Layer ทำหน้าที่รวมคุณลักษณะ
ที่ได้ทั้งหมดเพ่ือนำไปใช้ในการทำนายคลาส [33], [36], [40] 

2.5.2  การนำ CNN ไปใช้ในงานอุตสาหกรรม 
โครงข่ายคอนโวลูชัน (Convolutional Neural Networks, CNN) ได้เปลี ่ยนภาพรวมของ 

“วิสัยทัศน์คอมพิวเตอร์ในโรงงาน” จากระบบเชิงกฎที่ต้องออกแบบคุณลักษณะด้วยมือ ให้กลายเป็น
ระบบที่เรียนรู้ลำดับชั้นของลักษณะภาพได้เองตั้งแต่ขอบและพ้ืนผิว ไปจนถึงรูปร่างและความสัมพันธ์
ของวัตถุในบริบทจริง ความสามารถเช่นนี้ทำให้ CNN ถูกนำไปใช้กว้างขวางในงานตรวจสอบคุณภาพ 
ไม่ว่าจะเป็นการมองหาตำหนิระดับไมครอนบนชิ้นส่วนอิเล็กทรอนิกส์ การวิเคราะห์ภาพเอกซเรย์ทาง
การแพทย์เพื่อค้นหาความผิดปกติ การควบคุมคุณภาพอาหารด้วยการจับสัญญาณสีพื้นผิวที่ผิดจาก
มาตรฐาน ตลอดจนการตรวจสอบคุณภาพบรรจุภัณฑ์อย่างขวดน้ำและเครื่องดื่มว่ามีองค์ประกอบ
ครบถ้วน ไม่มีตำหนิ และเป็นไปตามข้อกำหนดการผลิต 

หัวใจสำคัญของการประยุกต์ใช้ CNN ในสายพานอุตสาหกรรมไม่ใช่เพียงความแม่นยำ แต่
รวมถึงเวลาแฝงและความแน่นอนของเวลาด้วย ภาพจากกล้องไหลเข้ามาอย่างต่อเนื่อง ขวดเคลื่อน
ผ่านจุดตรวจด้วยความเร็วที่อาจผันผวนเล็กน้อย ระบบจึงต้องให้คำตอบภายในกรอบเวลาที่เคร่งครัด
เพื่อส่งสัญญาณคัดทิ้งไปยังตัวกระทำ (Rejector) ให้ตรงตำแหน่งทันจังหวะ หากช้าเพียงเล็กน้อย 
ขวดก็พ้นจุดคัดทิ้งไปแล้ว อีกด้านหนึ่ง สภาพแวดล้อมในโรงงานไม่เคยนิ่งแสงสะท้อนจากพลาสตกิใส 
ฉลากเคลือบมัน เงาแข็งจากโคมไฟ หรือ Motion Blur [33], [35] เมื่อชัตเตอร์ช้าเกินไปทั้งหมดนี้
ส่งผลโดยตรงต่อคุณภาพสัญญาณภาพ จึงต้องออกแบบให้ดี (มุมกล้อง แสง ดิฟฟิวเซอร์/โพลาร์ไรซ์ 
และกำหนด ROI/Mask) เพ่ือให้โมเดลเห็นสิ่งที่สำคัญอย่างสม่ำเสมอ 

แม้ CNN จะทรงพลัง แต่การใช้งานจริงยังต้องคำนึงถึงความเปลี่ยนแปลงของสินค้าและบริบท 
(Domain Shift) เช่น รุ่นขวดใหม่ ลวดลายฉลากที่เปลี่ยนไป หรือความสว่างที่ค่อย ๆ ลดลงตามอายุ
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หลอดไฟ หากไม่มีการเฝ้าระวัง ตัวชี้วัดระบบ (เช่น FRR/FAR, Uptime) อาจค่อย ๆ แย่ลงโดยไม่รู้ตัว 
ดังนั้น ระบบที่ดีต้องถูกออกแบบให้ “เรียนรู้ ติดตาม ปรับจูน” ได้อย่างต่อเนื่อง ทั้งในส่วนข้อมูล ทั้ง
เก็บตัวอย่างเพิ่มและปรับแต่ง (Augmentation) กติกาหรือนโยบายการตัดสินใจ (Threshold) โดย
ไม่จำเป็นต้องรีเทรนโมเดลใหม่ทุกครั้ง [37, 38] 

ภายในการทำงาน (Pipe Line) ของระบบตรวจสอบด้วยภาพ กระบวนการเริ่มจากการรับภาพ
และเตรียมภาพอย่างเหมาะสม เพื่อลดเวลาแฝงและลดสิ่งรบกวน จากนั้นโมเดล CNN ทำอนุมาน
ให้ผลเป็นกรอบและคลาสของวัตถุ พร้อมค่าความเชื่อมั่น ผลเหล่านี้ผ่านการคัดกรอง เช่น NMS และ
เกณฑ์ความเชื ่อมั ่น (IoU) ก่อนถูกตีความในระดับ “ชิ ้นงานหนึ่งชิ ้น”อย่างกรณีขวดหนึ่งใบเพ่ือ
หลีกเลี่ยงการตัดสินใจจากสัญญาณแปลกปลอม ขั้นตอนถัดมาคือการแปลงผลอนุมานให้เป็นคำตอบ
ทางกระบวนการ คือ Pass หรือ Reject และกำหนดเวลาคัดทิ้งล่วงหน้าไปยังไมโครคอนโทรลเลอร์ 
เช่น Arduino เพื่อขับรีเลย์หรือโซลินอยด์ไปยังหัวเป่าลมหรือแขนผลักให้ตรงจังหวะ พร้อมบันทึก
เหตุการณ ์เช่น พารามิเตอร์ Timestamp, Bbox, Class, Conf, Decision, สถานะ I/O ฯลฯ สำหรับ
ตรวจสอบย้อนหลังและปรับจูน [38], [46] 

ในบริบทของงานวิจัยนี้ จึงเลือกใช้ CNN ผ่านสถาปัตยกรรม YOLOv8 ด้วยเหตุผลหลักคือ เร็ว 
แม่นยืดหยุ่น สถาปัตยกรรมแบบ One-Stage ช่วยลดเวลาแฝงให้เพียงพอกับสายพานจริง ขณะที่
ระบบของ Ultralytics ทำให้เวิร์กโฟลว์การฝึก ทดสอบ อนุมานเป็นมาตรฐาน ปรับขนาดโมเดลได้
ตามทรัพยากร เช่น รุ ่น n, s หรือ m และยังรองรับการเพิ่มประสิทธิภาพตอนนำขึ้นใช้งาน เช่น 
TensorRT/FP16/INT8 บน Jetson หรือ GPU บนพีซี เมื่อนำมาประกบกับการออกแบบแสงและ 
ROI ที่รัดกุม รวมถึงตรรกะการตัดสินใจระดับชิ้นงาน (Per-Bottle Rules) ระบบที่ได้จึงไม่เพียง 
“แม่น” ในเชิงโมเดล แต่ยัง “เชื่อถือได้” ในเชิงระบบสามารถตัดสินใจให้ทันเวลา ควบคุมอัตราคัดทิ้ง
ผิดและหลุดรอดให้อยู่ในเกณฑ์ และพร้อมรับมือความเปลี่ยนแปลงของหน้างานอย่างเป็นระบบ  [10, 
11], [47] 

2.5.3 ตัวอย่างเชิงเปรียบเทียบ 
เพ่ือให้เห็นภาพ สมมติว่ามีขวดน้ำ 1,000 ขวดที่ต้องตรวจสอบด้วยสายตามนุษย์ ผลอาจมีความ

ผิดพลาด 100–150 ขวด แต่หากใช้ CNN ผ่าน YOLOv8 จะสามารถตรวจจับได้ถูกต้องมากกว่า 950 
ขวด ความผิดพลาดเหลือเพียง 50 ขวด ซึ่งเมื่อคำนวณเป็นเปอร์เซ็นต์ ความแม่นยำจะสูงกว่า ร้อยละ 
95 สิ่งนี้สะท้อนถึงประโยชน์เชิงเศรษฐกิจที่ช่วยลดการสูญเสียในสายการผลิตได้อย่างมาก 

 
2.6  สถาปัตยกรรม YOLO  

สถาปัตยกรรม YOLO (You Only Look Once) ถือเป็นจุดเปลี่ยนสำคัญในวงการ Computer 
Vision โดยเฉพาะด้านการตรวจจับวัตถุ (Object Detection) ก่อนหน้าการพัฒนา YOLO วิธีการ
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ตรวจจับวัตถุแบบดั้งเดิม เช่น R-CNN, Fast R-CNN และ Faster R-CNN มีความแม่นยำสูงแต่ยังคง
ใช้เวลาประมวลผลนานเกินไป ไม่สามารถตอบโจทย์การทำงานในเวลาจริง (Real-time) ได้ YOLO 
ได้เสนอแนวคิดใหม่โดยการรวมการตรวจจับวัตถุและการจำแนกวัตถุไว้ในขั้นตอนเดียว ทำให้สามารถ
ตรวจจับได้อย่างรวดเร็วโดยไม่สูญเสียความแม่นยำมากนัก [48, 49, 50] 

2.6.1  พัฒนาการของ YOLO แต่ละรุ่น 
YOLOv1 เป็นงานวิจัยแรกของ Redmon et al. [50] ได้เสนอแนวคิด “You Only Look 

Once” โดยแบ่งภาพออกเป็นกริด (Grid Cell) ขนาด S×S แต่ละ Cell จะทำการทำนาย Bounding 
Box และ Class Probability จุดเด่นคือความเร็วที่สูงมาก สามารถทำงานได้ถึง 45 FPS แต่ข้อจำกัด
คือความแม่นยำต่ำในกรณีที่มีวัตถุขนาดเล็กหรือมีหลายวัตถุอยู่ใกล้กัน [50] 

YOLOv2 หรือ YOLO9000 ซึ่งพัฒนาขึ้นในปี 2017 รุ่นนี้ถูกพัฒนาให้แม่นยำขึ้นโดยการเพ่ิม 
Batch Normalization และใช้ Anchor Box ซึ่งทำให้โมเดลสามารถตรวจจับวัตถุหลากหลายขนาด
ได้ดีขึ ้น นอกจากนี ้ย ังสามารถตรวจจับวัตถุได้กว่า 9,000 คลาสจากการเรียนรู ้ร ่วมกัน (Joint 
Training) ก ั บ  ImageNet และ  COCO Dataset YOLOv2 จ ึ ง เ ป ็ นท ี ่ น ิ ย ม ใน ง านว ิ จ ั ย และ
ภาคอุตสาหกรรม [51] 

YOLOv3 ซึ ่งพัฒนาขึ ้นในปี 2018 ได้นำแนวคิดของ Residual Networks (ResNet) และ 
Feature Pyramid Networks (FPN) เข้ามาใช้ ทำให้สามารถตรวจจับวัตถุได้หลายสเกล (Multi-
scale Detection) โมเดลนี้มีความสมดุลระหว่างความเร็วและความแม่นยำ จนกลายเป็นรุ่นที่ใช้
แพร่หลายที่สุดในช่วงหลายปี เนื่องจากสามารถทำงานได้ทั้ง Real-time และให้ความแม่นยำสูงใน
สภาพแวดล้อมจริง [52] 

YOLOv4 ที่พัฒนาขึ้นในปี 2020 ที่พัฒนาโดย Alexey Bochkovskiy โดยเน้นการเพิ่มเทคนิค
การฝึกใหม่ ๆ เช่น CSPDarknet53 Backbone, Mish Activation, Mosaic Data Augmentation 
และ Self-Adversarial Training (SAT) ทำให้ YOLOv4 มีความแม่นยำสูงขึ้นในขณะที่ยังคงรักษา
ความเร็วได้ดี สามารถทำงานได้กว่า 60 FPS และมีค่า mAP สูงกว่างานวิจัยเดิม ๆ หลายเปอร์เซ็นต์ 
[53] 

YOLOv5 ที่พัฒนาขึ้นในปี 2020 เช่นเดียวกัน ถูกพัฒนาโดย Ultralytics และกลายเป็นรุ่นที่
ได้รับความนิยมอย่างสูง เนื่องจากใช้งานง่ายและพัฒนาใน PyTorch เต็มรูปแบบ YOLOv5 มีหลาย
ขนาด (Nano, Small, Medium, Large, XLarge) ทำให้ผู ้ใช้งานเลือกได้ตามความต้องการด้าน
ความเร็วหรือความแม่นยำ อีกทั ้งยังรองรับการ Deploy บน Mobile และ Edge Device เช่น 
Jetson Nano หรือ Raspberry Pi ได้สะดวก [54] 

YOLOv6 พัฒนาขึ้นในปี 2022 ได้รับการพัฒนาโดย Meituan เพื่อเน้นงานเชิงพาณิชย์ โดย
เน้นที่ความเร็วสูงมาก (เหมาะกับ Edge Device) [55] 
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YOLOv7 ที่พัฒนาขึ้นในปี 2022 เช่นเดียวกับ YOLOv6 ถูกพัฒนาโดย WongKinYiu et al. 
เป็นรุ่นที่ได้รับการยกย่องว่ามีประสิทธิภาพสูงสุดในยุคนั้น โดยมีเทคนิคใหม่ ๆ เช่น E-ELAN และมีค่า 
mAP สูงกว่า YOLOv5, YOLOv6 ทั้งในงานวิจัยและงานจริง [56] 

YOLOv8 ถูกพัฒนาขึ้นในปี 2023 ซึ่งพัฒนาโดย Ultralytics ถือเป็นเวอร์ชันล่าสุดที่ปรับปรุง
ทั้งโครงสร้างโมเดลและ Workflow การใช้งาน จุดเด่นของ YOLOv8 ได้แก่ รองรับการทำงานแบบ 
Plug-and-Play ผ่าน ultralytics package มีหลายโมเดลให้เล ือก เช ่น YOLOv8n, YOLOv8s, 
YOLOv8m, YOLOv8l, YOLOv8x ที ่ปรับสมดุลความเร็วและความแม่นยำ รองรับการ Export 
โมเดลไปยังหลายแพลตฟอร์ม เช่น ONNX, TensorRT, CoreML ทำให้ Deploy ง่ายมากขึ้นรองรับ
ทั้งการตรวจจับวัตถุ (Object Detection), การจำแนกภาพ (Image Classification), การแบ่งส่วน
เชิงวัตถุ (Instance Segmentation) และการติดตามวัตถุ (Object Tracking) YOLOv8 ยังปรับ
โครงสร้าง Backbone และ Neck ให้มีประสิทธิภาพสูงขึ้น โดยใช้ C2f Module ซึ่งเป็นการพัฒนาต่อ
ยอดจาก CSPNet ทำให้สามารถดึง Feature ได้ลึกขึ้นในขณะที่ใช้พารามิเตอร์น้อยกว่าเดิม [10], 
[57, 58] 

 
ตารางท่ี 2-1  การเปรียบเทียบประสิทธิภาพ YOLO แต่ละรุ่น 

รุ่น ปี 
ความเร็ว 
(FPS) 

mAP บน 
COCO 

จุดเด่น 
ข้อจำกัด 

YOLOv1 2016 ~45 ~63% รวดเร็วที่สุดในยุค ตรวจจับวัตถุเล็กไม่ดี 

YOLOv2 2017 ~40 ~78% Anchor Box, Multi-
class 

ยังมีข้อจำกัดใน 
Multi-scale 

YOLOv3 2018 ~30–35 ~85% Multi-scale, ResNet ใช้ทรัพยากรเพ่ิมขึ้น 

YOLOv4 2020 ~60 ~89% Mosaic 
Augmentation, 
CSPDarknet53 

ต้องการ GPU ที่แรง 

YOLOv5 2020 ~30–140 
(แล้วแต่รุ่น) 

~90% ใช้งานง่าย, PyTorch ไม่ใช่เวอร์ชันดั้งเดิม 

YOLOv7 2022 ~30–120 ~92% E-ELAN, Efficient ขนาดใหญ,่ Training 
ซับซ้อน 

YOLOv8 2023 ~30–120 ~93–
95% 

C2f, ใช้งานง่าย, 
Flexible 

ยังใหม่ ต้องทดสอบ
เพ่ิม 
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วิเคราะห์จากความเหมาะสมจากตารางที่ 2-1 งานวิจัยนี้จึงเลือกใช้ YOLOv8 เนื่องจาก รองรับ
การใช้งานง่าย เชื่อมต่อกับ Roboflow และ Google Colab ได้โดยตรง ทำงานได้แบบ Real-time 
แม้ใช้ Webcam ราคาประหยัด มีความแม่นยำสูง ค่า Precision และ Recall มากกว่า ร้อยละ 95 
ในชุดข้อมูลที่ทดลอง สามารถนำไปใช้งานบน Edge Device เช่น Jetson หรือ PC ที่มี GPU ปาน
กลางได้จริงรองรับการปรับแต่งเพื่อเชื่อมต่อกับ Arduino และระบบ Reject บนสายพานลำเลียง 
กล่าวคือ YOLOv8 เป็นสถาปัตยกรรมที่ลงตัวระหว่างความแม่นยำ ความเร็ว และความสะดวกในการ
ใช้งาน เหมาะกับงานวิจัยนี้ที่ต้องการต้นทุนต่ำแต่ยังคงคุณภาพในระดับอุตสาหกรรม [10], [57, 58] 
 
2.7  การวัดประสิทธิภาพของโมเดลเชิงคณิตศาสตร์  

การประเมินประสิทธิภาพของโมเดลการตรวจจับวัตถุเป็นขั ้นตอนที ่มีความสำคัญยิ่ง 
เนื่องจากไม่เพียงช่วยสะท้อนคุณภาพของโมเดลในเชิงตัวเลข แต่ยังช่วยให้ผู้วิจัยสามารถระบุข้อจำกัด
และปรับปรุงระบบให้มีความแม่นยำมากยิ่งขึ้น การวัดประสิทธิภาพที่ใช้ทั่วไปในงานด้าน Computer 
Vision และ Deep Learning ประกอบด้วยตัวชี้วัดหลัก ได้แก่ Accuracy (สมการที่ 2-1) ซ่ึงตัวชี้วัดนี้
เหมาะกับกรณีที่จำนวนคลาสสมดุล แต่หากมีข้อมูลที่ไม่สมดุล (เช่น ขวดดี ร้อยละ 90 ขวด ขวดที่เป็น
ชิ้นงานเสีย ร้อยละ 10) Accuracy อาจทำให้เข้าใจผิดได้ เหมาะกับกรณีคลาสสมดุล แต่ถ้าข้อมูลไม่
สมดุล (เช่น ขวดดี ร้อยละ 90 : defect ร้อยละ 10) อาจให้ภาพรวมที่ “ดูดีเกินจริง” จึงต้องพิจารณา
ค่าชี้วัดอ่ืนร่วมด้วย [37, 38] Precision (สมการที่ 2-2) บอกว่าจากสิ่งที่โมเดลบอกว่าเป็น ชิ้นงานเสีย 
มีสัดส่วนเท่าไรที่เป็น ชิ้นงานเสีย จริง ค่า Precision สูงสะท้อนว่าโมเดลไม่ทำนายผิดว่าขวดปกติเป็น
ชิ้นงานเสียบ่อยนัก บอกว่า “สิ่งที่โมเดลบอกว่าเป็นชิ้นงานเสีย” มีสัดส่วนเท่าไรที่เป็นของเสียจริง ค่า 
Precision สูงช่วยลดการคัดทิ้งของดี (False Positive) [37, 38] Recall (สมการที่ 2-3) ซึ่งสะท้อน
ถึงความสามารถของโมเดลในการตรวจจับ defect ทั้งหมด Recall สูงหมายถึงโมเดลไม่พลาด 
defect จริงในสายการผลิต บอกความสามารถของระบบในการ “ไม่ปล่อยให้ของเสียหลุดรอด” ค่า 
Recall สูงลดความเสี่ยงหลุดรอดไปขั้นตอนถัดไป [53, 54] F1-Score (สมการที่ 2-4) เป็นตัวชี้วัดที่
สมดุลระหว่าง Precision และ Recall หากค่าใดค่าหนึ ่งต่ำ F1 ก็จะต่ำไปด้วย เป็นค่าดุลยภาพ
ระหว่าง Precision และ Recall เหมาะเมื่อไม่สามารถเลือกให้ความสำคัญด้านใดด้านหนึ่งเป็นพิเศษ 
[53] และ mAP (mean Average Precision) (สมการที ่ 2-5) mAP ใช้กันแพร่หลายที ่ส ุดในงาน 
Object Detection โดยพ ิจารณาท ั ้ ง  Precision และ Recall หลายค ่า Threshold ของ IoU 
(Intersection over Union) เช่น mAP50 หมายถึงค่า mAP ที่ IoU ≥ 0.5 ส่วน mAP50-95 หมายถึง
ค่าเฉลี่ย mAP ที่ IoU ตั้งแต่ 0.5 ถึง 0.95 ใช้กำหนดเกณฑ์การนับ “ทายถูก” ของกรอบตรวจจับ เช่น 
mAP@0.5 หมายถึงคำนวณ mAP โดยนับถูกเม่ือ IoU ≥ 0.5 ส่วน mAP@0.5:0.95 คือค่าเฉลี่ย mAP 
เมื่อปรับเกณฑ์ IoU ตั้งแต่ 0.50 ถึง 0.95 ทีละ 0.05 [37], [46], [59, 60, 61] 
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Accuracy =
TP + TN

TP + TN + FP + FN
 

 

(2-1) 

Precision =
TP

TP + FP
 

 

(2-2) 

Recall =
TP

TP + FN
 

 

(2-3) 

F1 − Score = 2 ×
Precision × Recall

Precision + Recall
 

(2-4) 
 

IoU =
Aerea of Overlap

Area of Union
 

(2-5) 

 
เมื่อ TP (True Positive) คือ โมเดลทำนายว่ามีตำหนิ และมีตำหนิจริง 
 TN (True Negative) คือ โมเดลทำนายว่าปกติ และปกติจริง 
 FP (False Positive) คือ โมเดลทำนายว่ามีตำหนิ แต่จริง ๆ ปกติ 
 FN (False Negative) คือ โมเดลทำนายว่าปกติ แต่จริง ๆ มีตำหนิ 

 
ตัวอย่างการคำนวณ สมมติว่ามีการทดสอบโมเดลกับ ภาพ 1,000 ภาพ ซึ่งผล Confusion 

Matrix เป็นดังนี้ TP มีค่าเท่ากับ 460 TN มีค่าเท่ากับ 480 FP มีค่าเท่ากับ 30 และ FN มีค่าเท่ากับ 
30 ดังนั ้น Accuracy มีค่าร้อยละ 94 Precision มีค่าร้อยละ 93.9 Recall มีค่าร้อยละ 93.9 F1-
Score มีค่าประมาณร้อยละ 93.9 และ mAP50 (สมมติจากผลการทดสอบ) มีค่าร้อยละ 96.5 ผลลัพธ์
ดังกล่าวชี้ว่าโมเดลมีความสมดุลระหว่าง Precision และ Recall และสามารถใช้งานในสายพานจริง
ได ้

ในการตีความเชิงอุตสาหกรรม การประเมินประสิทธิภาพของระบบตรวจจับชิ้นงานเสียบน
สายพานลำเลียง การทำความเข้าใจค่าตัวชี ้ว ัดทางสถิติ (Evaluation Metrics) เช่น Precision, 
Recall, F1-score และ Mean Average Precision (mAP) มีความสำคัญอย่างยิ่ง เพราะแต่ละค่ามี
ความหมายและผลกระทบต่อการตัดสินใจในเชิงอุตสาหกรรมแตกต่างกันโดยสิ้นเชิง การตีความผล
การประเมินเหล่านี้จะช่วยให้ผู้พัฒนาและวิศวกรสามารถเลือกแนวทางการปรับโมเดลให้เหมาะสมกับ
ลักษณะการผลิตจริงของโรงงาน 

Precision (ค่าความแม่นยำในการทำนายผลบวก) Precision แสดงถึงความถูกต้องของการ
ตรวจจับในกลุ่มที่ระบบระบุว่าเป็น “ชิ้นงานเสีย” หรือ Defect ยิ่งค่า Precision สูง หมายความว่า
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ผลการตรวจจับที่ระบบระบุว่าเสีย มีโอกาสสูงที่จะเป็นของเสียจริง ตัวเลขนี้จึงสะท้อน “ความมั่นใจ
ของระบบ” ในการแจ้งเตือน Defect ในเชิงอุตสาหกรรม หากต้องการ ลดการคัดทิ้งขวดที่ปกติ 
(False Positive) เช่น ในสายการผลิตที่มีต้นทุนสูงต่อหน่วย การเน้นให้ Precision สูงถือเป็นแนวทาง
ที่เหมาะสม เพราะจะช่วยให้ขวดดีไม่ถูก Reject โดยไม่จำเป็น อย่างไรก็ตาม การตั้งค่าโมเดลให้เน้น 
Precision สูงเกินไปอาจทำให้ Recall ลดลง ซึ่งหมายถึงมีโอกาสที่โมเดลจะมองข้าม Defect บางตัว 
(เช่น ขวดที่ฝาเบี้ยวเล็กน้อย) และปล่อยผ่านเข้าสู่กระบวนการบรรจุหรือจำหน่ายได้ [37, 38] 

Recall (ค่าความครอบคลุมหรือความสามารถในการตรวจจับ) Recall แสดงถึงความสามารถ
ของระบบในการตรวจจับ Defect ทั้งหมดที่มีอยู่ในสายการผลิต ยิ่งค่า Recall สูง หมายความว่า
ระบบสามารถตรวจพบ Defect ได้ครบถ้วน ไม่ปล่อยให้หลุดรอดไปสู่กระบวนการถัดไป 

ในเชิงอุตสาหกรรม การเน้น Recall สูงจะเหมาะกับกระบวนการที่ ต้องการตรวจสอบคุณภาพ
เข้มงวด เช่น สินค้าประเภทเครื่องดื่มหรือยาที่ Defect แม้เพียงเล็กน้อยก็อาจส่งผลต่อความปลอดภัย
ของผู้บริโภค อย่างไรก็ตาม การเพิ่ม Recall มักทำให้เกิด False Positive มากขึ้น หรือกล่าวคือ 
ระบบจะมีแนวโน้ม “ขยันแจ้งเตือน” มากเกินไป ส่งผลให้เกิดการ Reject ขวดดีโดยไม่จำเป็น ซึ่งอาจ
กระทบต่ออัตราการผลิต (Throughput) และเพ่ิมภาระการตรวจสอบซ้ำของพนักงาน [37, 38] 

F1-Score (ค่าดุลยภาพระหว่าง Precision และ Recall) F1-Score เป็นค่าที่ใช้วัดความสมดุล
ระหว่าง Precision และ Recall โดยเฉพาะอย่างยิ่งในกรณีที่ไม่สามารถเลือกได้ว่าควรให้ความสำคัญ
กับด้านใดมากกว่า ค่า F1 จะคำนวณจากค่าเฉลี่ยเชิงฮาร์มอนิก (Harmonic Mean) ของ Precision 
และ Recall ซึ่งเน้นความเสมอภาคของทั้งสองด้าน 

ในมุมมองอุตสาหกรรม การใช้ค่า F1 เป็นเกณฑ์หลักจะช่วยให้ระบบตรวจจับ Defect มีความ
สมดุล คือ สามารถตรวจจับได้ครบถ้วนในระดับหนึ่งโดยไม่ทำให้เกิดการ Reject มากเกินไป จึง
เหมาะสำหรับกระบวนการที่ต้องการทั้ง “ประสิทธิภาพในการตรวจจับ” และ “เสถียรภาพในการ
ผลิต” เช่น สายพานบรรจุภัณฑ์ที่มีความเร็วปานกลางซึ่งต้องการรักษาคุณภาพโดยไม่ลดอัตราการ
ผลิต [60, 61] 

mAP (Mean Average Precision) สำหรับงานด้านการตรวจจับวัตถุ (Object Detection) ค่า 
mAP ถือเป็นตัวชี้วัดที่สำคัญที่สุด เพราะใช้วัดความสามารถของโมเดลในการทำนาย “ตำแหน่งของ
วัตถุ (Bounding Box)” และ “ประเภทของวัตถุ (Class Label)” พร้อมกัน ค่า mAP สูงหมายความ
ว่าโมเดลสามารถระบุตำแหน่ง defect ได้อย่างแม่นยำและมีขอบเขตสอดคล้องกับของจริง 

ในบริบทของสายพานลำเลียง การมีค่า mAP สูง (>ร้อยละ 90) หมายถึง ระบบสามารถวาด
กรอบ Bounding Box ครอบตำแหน่ง defect ได้ถูกต้อง เช่น การระบุบริเวณฝาขวดที่หายไปหรือ
ฉลากที่เอียงได้อย่างแม่นยำ ซึ่งเป็นปัจจัยสำคัญในการส่งสัญญาณ Reject ที่ตรงจังหวะและลดความ
ผิดพลาดของกลไกทางกล (Pneumatic Rejector) ในการคัดแยกชิ้นงาน 
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ในส่วนของการประยุกต์ใช้ในเชิงอุตสาหกรรม จากการทดลองในงานวิจัยนี้ พบว่าโมเดล 
YOLOv8 ที่ได้รับการปรับแต่งสามารถรักษาค่า Precision เฉลี่ยได้ที่ ร้อยละ 96 และ Recall ที่ ร้อย
ละ 95 ซึ่งเป็นระดับที่ให้สมดุลระหว่างการตรวจจับ Defect ได้ครบถ้วนและลดการ Reject ขวดดี
โดยไม่จำเป็น ค่า F1 ที่สูงกว่า ร้อยละ 95 แสดงถึงความเสถียรของระบบในการทำงานต่อเนื่อง และ
ค่า mAP ที่อยู่ในระดับ ร้อยละ 97 ยืนยันว่าโมเดลสามารถระบุตำแหน่ง Defect ได้อย่างถูกต้อง
แม่นยำ 

ในเชิงอุตสาหกรรม ตัวเลขเหล่านี้มีความหมายอย่างยิ่งต่อการตัดสินใจทางการผลิต หาก
โรงงานต้องการลดของเสียและต้นทุนการผลิต การเลือกใช้โมเดลที่มีค่า Precision สูงจะเหมาะสม 
แต่หากต้องการรักษาคุณภาพสินค้าระดับพรีเมียม การเลือกโมเดลที่เน้น Recall สูงอาจให้ความมั่นใจ
มากกว่า อย่างไรก็ตาม การรักษาความสมดุลโดยอ้างอิงค่า F1 และการปรับค่า Confidence 
Threshold ของ YOLOv8 ให้เหมาะสมกับสายการผลิตแต่ละประเภท ถือเป็นแนวทางที่ดีที่สุดในเชิง
ปฏิบัติ [46], [59] 
 
2.8  งานวิจัยท่ีเกี่ยวข้อง  

งานของ Mittal et al. [62] ใช้ CNN ดั้งเดิมตรวจจับตำหนิบนพื้นผิวโลหะ เช่น รอยขีดข่วน
และรอยแตกร้าว ภายใต้สภาพแวดล้อมที ่ควบคุม (แสงคงที ่ ผิวสะอาด มุมกล้องเหมาะสม) 
แบบจำลองแยกชิ้นงานดี/เสียได้แม่นยำราว ร้อยละ 90–92 จุดเด่นคือโจทย์มีพื้นผิวเรียบและสภาพ
การถ่ายภาพสม่ำเสมอ จึงใช้สถาปัตยกรรมไม่ซับซ้อนได้ผลดี อย่างไรก็ดี เมื่อย้ายสู่สภาพจริงที่มีฝุ่น
และแสงสะท้อน ผลลัพธ์ลดลงราว ร้อยละ 7–10 สะท้อนความเปราะบางต่อสภาพหน้างาน [63, 64] 

Ren et al. [65] ประยุกต ์YOLOv4 กับบรรจุภัณฑ์อาหารที่เคลื่อนบนสายพาน (เช่น กระป๋อง 
กล่องอาหาร) โดยใช้เทคนิค Mosaic Augmentation และ Self-Adversarial Training (SAT) เพ่ือ
เพิ ่มความหลากหลายของข้อมูล ผลทดลองห้องปฏิบัติการรายงานความเร็วราว 35 FPS พร้อม 
Precision ประมาณร้อยละ 93 และ Recall ประมาณ ร้อยละ 92 แสดงศักยภาพงานจริงแบบ
เรียลไทม์ แต่ยังไวต่อแสงสะท้อนและพ้ืนผิวเงางาม [66], [67] 

Zhang et al. [68] ใช้ YOLOv5 ตรวจตำหนิบนแผงวงจร (เช ่น จ ุดบัดกร ีผ ิดปกติ) ได้  
Precision ประมาณ ร้อยละ 94.5 Recall ประมาณ ร้อยละ94.0 ความเร็วราว 50 FPS เหมาะกับ
วัตถุขนาดเล็กมาก อย่างไรก็ดี เมื่อวัตถุหนาแน่นและอยู่ใกล้กันอาจเกิดการทับซ้อนของกรอบตรวจจับ 
ส่งผลให้ความแม่นยำลดลง [67, 69] 

จากการทบทวนวรรณกรรมและงานวิจัยที่เกี ่ยวข้อง สามารถสรุปสาระสำคัญได้  คือ การ
ประมวลผลภาพ (Image Processing) เป็นรากฐานของระบบตรวจสอบอัตโนมัติ โดยมีการพัฒนา
อย ่างต ่อเน ื ่องจากเทคน ิคเช ิงด ั ้ ง เด ิม เช ่น Edge Detection, Thresholding และ Feature 



 

 

 

16 

 

 

Extraction ไปสู่การใช้โครงข่ายประสาทเทียมเชิงลึก (Deep Neural Networks, DNNs) โดยเฉพาะ 
Convolutional Neural Networks (CNNs) ที่สามารถเรียนรู้คุณลักษณะจากข้อมูลภาพได้โดยตรง 
ทำให้ระบบสามารถทำงานได้แม่นยำขึ้นแม้ในสภาพแวดล้อมที่ซับซ้อน 

การเรียนรู้ของเครื่อง (Machine Learning) และโครงข่ายประสาทเทียม (Artificial Neural 
Networks) ได้เข้ามามีบทบาทสำคัญในการตรวจสอบคุณภาพ โดยเฉพาะงานที่ต้องการแยกแยะ
ความแตกต่างที่ละเอียดอ่อนระหว่างชิ้นงานดีและชิ้นงานเสีย ทั้งนี้ CNN และการพัฒนาต่อเนื่องสู่ 
Deep Learning ทำให้โมเดลมีศักยภาพในการตรวจสอบที่เร็วและแม่นยำกว่าวิธีการดั้งเดิมอย่างมี
นัยสำคัญ 

สำหรับสถาปัตยกรรม YOLO (You Only Look Once) ถือเป็นอีกหนึ่งก้าวกระโดด เนื่องจาก
สามารถตรวจจับวัตถุได้แบบ Real-time ในขั้นตอนเดียว ต่างจาก R-CNN หรือ Faster R-CNN ที่มี
หลายขั้นตอน พัฒนาการตั้งแต่ YOLOv1 จนถึง YOLOv8 แสดงให้เห็นถึงความก้าวหน้าทั้งด้านความ
แม่นยำ (mAP สูงขึ ้นต่อเนื ่อง) และความเร็ว (FPS ที่สามารถรองรับสายการผลิตจริงได้) โดย 
YOLOv8 ม ีความย ืดหย ุ ่น รองร ับการใช ้งานได ้ท ั ้ งการตรวจจ ับ ( Detection) การจำแนก 
(Classification) การแบ่งส่วนเชิงวัตถุ (Segmentation) และการติดตามวัตถุ (Tracking) จึงเป็น
สถาปัตยกรรมที่เหมาะสมที่สุดในการเลือกใช้สำหรับงานวิจัยนี้ 

ด้านการวัดประสิทธิภาพของโมเดล การใช้ตัวชี้วัดเชิงคณิตศาสตร์ เช่น Accuracy, Precision, 
Recall, F1-Score และ mAP ช่วยสะท้อนถึงศักยภาพของโมเดลในมิติต่าง ๆ ทั้งความแม่นยำ ความ
ครอบคลุม ความสมดุล และความสามารถในการตรวจจับตำหนิในตำแหน่งที่ถูกต้อง การวิเคราะห์เชิง
ตัวเลขและตารางเปรียบเทียบหลายรอบการทดลองยืนยันว่า YOLOv8 สามารถให้ผลลัพธ์ที่เสถียร
และมีประสิทธิภาพสูงกว่าเทคนิคดั้งเดิม 

จากการทบทวนงานวิจัยที่เกี่ยวข้อง ทั้งในและต่างประเทศ พบว่า งานต่างประเทศมีการใช้
โมเดลที่หลากหลาย เช่น CNN, YOLOv4, YOLOv5 และงานล่าสุด GES-YOLO ที่ปรับแต่ง YOLOv8 
เพื่อเพิ่มความแม่นยำในงานตรวจจับขวดน้ำดื่ม ขณะที่งานวิจัยในประเทศไทยยังคงมีข้อจำกัดด้าน
จำนวนข้อมูลและทรัพยากร แต่ก็มีความพยายามปรับใช้เทคนิคให้เหมาะสม เช่น การใช้ SVM หรือ
การใช้ YOLOv5 ในการตรวจสอบชิ้นงานบางประเภท 

เมื่อเปรียบเทียบงานทั้งหมด จะเห็นได้ว่า งานวิจัยนี้มีความแตกต่างและมีคุณค่าเพ่ิม เนื่องจาก 
(1) ใช้ YOLOv8 ซึ ่งเป็นสถาปัตยกรรมล่าสุด (2) ใช้ Webcam ราคาประหยัด แทนการใช้กล้อง
อุตสาหกรรมราคาแพง (3) เชื่อมต่อกับ Arduino เพ่ือควบคุมกลไก Reject ซึ่งทำให้งานวิจัยนี้ไม่เพียง
หยุดอยู่ที่การตรวจจับเชิงซอฟต์แวร์ แต่ยังสามารถนำไปใช้ได้จริงในสายการผลิต และ (4) มีการ
ทดสอบในสภาวะแวดล้อมหลากหลาย ซึ่งช่วยยืนยันความทนทานของระบบ 
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กล่าวโดยสรุป บทที่ 2 แสดงให้เห็นถึงความสำคัญของการผสมผสานระหว่างทฤษฎีด้าน Image 
Processing, Machine Learning, Deep Learning, การพัฒนาสถาปัตยกรรม YOLO และการวัด
ประสิทธิภาพโมเดล ตลอดจนการทบทวนงานวิจัยก่อนหน้า เพื่อสร้างรากฐานที่แข็งแกร่งสำหรับการ
ดำเนินการวิจัยในบทต่อไป 
 



 

 

 

 

 

บทท่ี 3  
วิธีการดำเนินการวิจัย 

 
การวิจัยนี้ มีวัตถุประสงค์เพ่ือสร้างและประเมินระบบตรวจจับชิ้นงานเสียบนสายพานลำเลียง

แบบเรียลไทม์ โดยผสานการประมวลผลภาพด้วย YOLOv8 กับการสั ่งงานฮาร์ดแวร์คัดทิ ้งผ่าน 
Arduino/Rejector บนสายพานจำลอง วิธีดำเนินการประกอบด้วยการกำหนดปัญหาและข้อกำหนด
ระบบ การจัดเก็บ ทำฉลาก ขยายข้อมูลภาพ การฝึกและปรับจูนโมเดล การออกแบบซอฟต์แวร์และ
ฮาร์ดแวร์ การทดสอบแบบเรียลไทม์ภายใต้เงื่อนไขแสงและความเร็วที่แตกต่าง และการวิเคราะห์
สมรรถนะด้วยตัวชี้วัดมาตรฐาน (Precision, Recall, F1-score, mAP) ควบคู่กับการประเมินต้นทุน
เพื่อยืนยันความเป็นไปได้เชิงอุตสาหกรรมเพื่อความชัดเจน กระบวนการดำเนินงานในบทนี้มีขั้นตอน
ดังนี้ 

3.1  การศึกษาวิเคราะห์ปัญหาที่เก่ียวข้อง 
3.2  การจัดเก็บและเตรียมข้อมูล 
3.3  การพัฒนาแบบจำลองและวัดประสิทธิภาพ 
3.4  การออกแบบและพัฒนาระบบ 
3.5  การประเมินคุณภาพและความพึงพอใจ 

 
3.1  การศึกษาวิเคราะห์ปัญหาที่เกี่ยวข้อง 

การศึกษาปัญหาที่เกี่ยวข้องเป็นขั้นตอนแรกในการวิจัยครั้งนี้ โดยผู้วิจัยได้ลงพื้นท่ีเก็บข้อมูลจาก
โรงงานขนาดกลางในอุตสาหกรรมเครื่องดื่ม ซึ่งประสบปัญหา การตรวจสอบคุณภาพขวดบรรจุภัณฑ์ 
โดยเฉพาะตำหนิที่พบบ่อย เช่น ขวดไม่มีฝาปิด (Missing Cap) ขวดไม่มีฉลาก (Missing Label)  

จากการสัมภาษณ์พนักงานตรวจสอบคุณภาพ พบว่ามีอัตราความผิดพลาดในการตรวจสอบสูง
ถึง ร้อยละ 12 – 15 ต่อกะการทำงาน โดยสาเหตุหลักเกิดจาก ความเหนื่อยล้า (Fatigue) ความเร็ว
สายพานที่สูงเกินไป และความซับซ้อนของตำหนิที่ยากต่อการตรวจจับด้วยตาเปล่า [70, 71] 

เมื ่อเปรียบเทียบกับเครื ่องตรวจสอบเชิงพาณิชย์ (Vision Sensor) ที ่มีราคาแพง (หลัก 
300,000 – 500,000 บาท) พบว่าโรงงานขนาดกลางและขนาดเล็กมักไม่สามารถลงทุนได้ ทำให้ต้อง
ใช้แรงงานมนุษย์แทน และนั่นคือที่มาของปัญหาที่วิจัยนี้พยายามแก้ไข [33] 

ดังนั้น งานวิจัยนี้จึงมุ่งเน้นการพัฒนา ระบบตรวจสอบชิ้นงานเสียอัตโนมัติ ที่มีต้นทุนต่ำ โดยใช้ 
Webcam ราคาประหยัด คอมพิวเตอร์ PC  Arduino ควบคุมกลไก Reject ร่วมกับการพัฒนาโมเดล 
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Machine Learning (YOLOv8) เพ่ือยกระดับความแม่นยำในการตรวจสอบ และลดภาระของแรงงาน
มนุษย ์[10, 11], [47], [60] 

 

 
 

ภาพที่ 3-1 สถาปัตยกรรมระบบตั้งแต่กล้องถึงกลไกคัดทิ้ง  
 
3.2  การจัดเก็บและเตรียมข้อมูล 

การจัดเก็บและเตรียมข้อมูลถือเป็นหัวใจสำคัญของงานวิจัยด้านการประมวลผลภาพและการ
เร ียนรู ้ของเครื ่อง เนื ่องจากคุณภาพและความครอบคลุมของชุดข้อมูลจะส่งผลโดยตรงต่อ
ประสิทธิภาพของโมเดลตรวจจับชิ้นงานเสีย งานวิจัยนี้ได้ออกแบบกระบวนการเก็บข้อมูลอย่างเป็น
ระบบ โดยอาศัยการจำลองสายพานลำเลียงที่ติดตั้ง Webcam ความละเอียด 1080p ควบคู่กับระบบ
แสงสว่างแบบ LED Ring Light เพ่ือควบคุมความสว่างและลดผลกระทบจากสภาพแวดล้อมภายนอก 
เช่น แสงจ้า เงาสะท้อน หรือแสงที่ไม่สม่ำเสมอ การควบคุมปัจจัยด้านแสงดังกล่าวช่วยให้ได้ภาพที่มี
คุณภาพสูง เหมาะสมต่อการนำไปใช้ฝึกโมเดลตรวจจับ [33], [35], [43] 

3.2.1 จำนวนและลักษณะของข้อมูล 
การเก็บข้อมูลประกอบด้วยภาพถ่ายของขวดบรรจุภัณฑ์ทั้งที่ปกติและที่มีตำหนิหลากหลาย

ประเภท เพื่อสร้างความสมดุลของข้อมูลและสะท้อนความเป็นจริงในการผลิต ข้อมูลที่เก็บได้มีดังนี้  
ขวดปกติ: 5,000 ภาพ ขวดไม่มีฝา: 2,000 ภาพ ขวดไม่มีฉลาก: 2,000 ภาพ ขวดไม่มีฝาและไม่มี
ฉลาก: 1,500 ภาพ รวมทั้งหมด 10,500 ภาพ ซึ่งถือเป็นจำนวนที่เพียงพอต่อการฝึกโมเดล Deep 
Learning สำหรับงานตรวจจับวัตถุ (Object Detection) เนื่องจากมีความสมดุลระหว่างคลาสปกติ
และคลาส Defect 

3.2.2 การทำ Annotate (Labeling) 
เพื่อให้ข้อมูลมีความพร้อมในการนำไปฝึกโมเดล YOLO จำเป็นต้องมีการทำ การกำหนดป้าย

กำกับ (Annotation) โดยใช้แพลตฟอร์ม Roboflow ซึ่งช่วยให้ผู้วิจัยสามารถสร้าง Bounding Box 
ครอบตำหนิของขวดได้อย่างแม่นยำในแต่ละคลาส เช่น "No Cap", "No Label", "Normal" ข้อดีของ
การใช้ Roboflow คือระบบสามารถ Export ข้อมูลให้อยู่ในรูปแบบที่รองรับ YOLO โดยตรง เช่นไฟล์ 
txt ที่มีข้อมูลพิกัด Bounding Box และคลาส ทำให้การนำเข้าข้อมูลสู ่ขั ้นตอนการฝึกโมเดลใน 
Google Colab เป็นไปอย่างรวดเร็วและลดความผิดพลาด [10], [43] 
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3.2.3 การทำ Data Augmentation 
เพื่อเพิ่มความหลากหลายของข้อมูลและป้องกันปัญหา Overfitting ได้มีการประยุกต์เทคนิค

การขยายข้อมูล (Data Augmentation) โดยใช้วิธีการ ได้แก่ การหมุนภาพ (Rotation): หมุน ±15° 
เพ่ือจำลองมุมกล้องที่อาจเปลี่ยนไป การกลับด้าน เช่น Flip Horizontal และ Flip-Vertical เพ่ือเพ่ิม
ความหลากหลายของทิศทางวัตถุ การปรับความสว่าง (Brightness) และความเปรียบต่าง (Contrast) 
เพื่อรองรับสภาพแสงที่แตกต่าง การเบลอเล็กน้อย โดยการใช้ Gaussian Blur เพื่อจำลองกรณีภาพ
สั่นไหวหรือเบลอเล็กน้อยจากการเคลื่อนที่ หลังจากทำ Augmentation แล้ว จำนวนข้อมูลถูกขยาย
จาก 1,200 ภาพเป็น 2,500 ภาพ ซึ่งช่วยเพิ่มความครอบคลุมและความสามารถในการเรียนรู้ของ
โมเดล [70] 

3.2.4 การแบ่งชุดข้อมูล  
เพื่อให้การฝึกโมเดลมีความเป็นระบบและสามารถประเมินผลได้อย่างถูกต้อง ได้ทำการแบ่ง

ข้อมูลออกเป็น 3 ชุดหลัก คือ Training Set: ร้อยละ70 หรือ 17,50 ภาพ สำหรับใช้ในการฝึกโมเดล
Validation Set: ร้อยละ 20 หรือ 5,000 ภาพ สำหรับตรวจสอบการเรียนรู้และปรับค่าพารามิเตอร์ 
Test Set: ร้อยละ10 หรือ 2,500 ภาพ สำหรับใช้ทดสอบโมเดลที่เสร็จสิ้นแล้ว วิธีการแบ่งเช่นนี้ถือ
เป็นมาตรฐานในงานวิจัยด้าน Computer Vision และ Machine Learning เนื่องจากช่วยลดโอกาส
ในการประเมินผลที่เอนเอียง และสะท้อนความสามารถของโมเดลในสถานการณ์จริงได้ดียิ่งขึ้น  [10], 
[36] 

3.2.5 การจัดเก็บและบริหารจัดการข้อมูล 
ข้อมูลทั้งหมดถูกจัดเก็บและจัดการผ่าน Google Drive ควบคู่กับ Roboflow โดยในขั้นตอน

การฝ ึกโมเดล ข ้อม ูลถ ูก Import เข ้า  Google Colab ผ ่าน API ของ Roboflow ซ ึ ่ งช ่วยให้
กระบวนการทำงานเป็นอัตโนมัติและสะดวกต่อการอัปเดตชุดข้อมูลในอนาคต การบริหารจัดการ
ข้อมูลในลักษณะนี้ยังช่วยลดความซับซ้อนในการทำงานซ้ำ (Reproducibility) และรองรับการ
ปรับปรุงโมเดลต่อเนื ่อง (Continuous Improvement) ได้อย่างมีประสิทธิภาพ [10], [33], [43], 
[60] 
 
3.3  การพัฒนาแบบจำลองและการวัดประสิทธิภาพ 

การพัฒนาแบบจำลอง (Model Development) ถือเป็นขั ้นตอนสำคัญที ่สุดของงานวิจัย 
เนื่องจากคุณภาพของโมเดลจะเป็นตัวกำหนดโดยตรงถึงความสามารถในการตรวจจับและจำแนก
ตำหนิของขวดบนสายพานลำเลียง งานวิจัยนี้เลือกใช้สถาปัตยกรรม YOLOv8 ในตระกูล YOLO [10], 
[53] ที่มีความโดดเด่นในด้าน ความเร็ว ความแม่นยำ และความยืดหยุ่น โดยสามารถปรับใช้ได้ในงาน
อุตสาหกรรมจริงแบบ Plug-and-Play อีกท้ังยังรองรับการทำงานบนแพลตฟอร์ม Google Colab ซ่ึง
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เอื้อต่อการฝึกโมเดลด้วย GPU ที่มีประสิทธิภาพสูงโดยไม่จำเป็นต้องลงทุนฮาร์ดแวร์ราคาแพง [10, 
11] 

3.3.1  สภาพแวดล้อมการพัฒนา (Environment Setup) 
เพื่อให้การฝึกโมเดลและการทดสอบสามารถดำเนินการได้อย่างราบรื่น งานวิจัยนี้ได้เลือก

สภาพแวดล้อมทั้งฮาร์ดแวร์และซอฟต์แวร์ดังต่อไปนี้ 
3.3.1.1  ฮาร์ดแวร์ (Hardware) 

คอมพิวเตอร์ส่วนบุคคล (Personal Computer, PC) ประกอบด้วย CPU Intel Core i5, RAM 
32GB, Google Colab พร้อม GPU Tesla T4 / A100 (รองรับ CUDA) Webcam ความละเอียด 
1080p สำหรับจับภาพจากสายพานลำเลียง Arduino Uno พร้อม Relay Module สำหรับเชื่อมต่อ
กับกลไก Pneumatic Rejector [11], [47] 

3.3.1.2  ซอฟต์แวร์ (Software) 
Google Colab (ใช้เป็นแพลตฟอร์มการฝึกโมเดล) Python 3.10 PyTorch (Deep Learning 

Framework) Ultralytics YOLOv8 [55] Library OpenCV [43] สำหร ับการประมวลผลภาพ 
Roboflow API สำหรับการ Import Dataset Matplotlib และ Seaborn สำหรับการวิเคราะห์และ
สร้างกราฟ [71, 72] 

3.3.1.3  พารามิเตอร์หลักในการฝึก (Training Parameters) 
Dataset จำนวน 25,000 ภาพ ที่ได้หลังการทำ Augmentation Batch Size คือ 32 Epoch 

คือ 100 ขนาดภาพ คือ 640×640 พิกเซล การกำหนดสภาพแวดล้อมเช่นนี้ทำให้ระบบสามารถฝึก
โมเดลได้อย่างมีประสิทธิภาพ ทั้งในเชิงความเร็วและการรองรับ Dataset ขนาดใหญ่ [10], [70] 

3.3.2  การฝึกโมเดล (Model Training) 
กระบวนการฝึกโมเดล YOLOv8 ในงานวิจัยนี้ดำเนินการบน Google Colab โดยเชื่อมต่อ

ข้อมูลผ่าน Roboflow API ซึ่งช่วยให้การ Import Dataset มีความสะดวกและสามารถอัปเดตได้
อัตโนมัติ ขั้นตอนการฝึกประกอบด้วย [10], [70], [73] 

3.3.2.1  Preprocessing 
ข้อมูลภาพทั้งหมดถูกปรับขนาด (Resize) ให้อยู่ที่ 640×640 พิกเซล ทำ Normalization ของ

ค่า Pixel ให้อยู่ในช่วง [0,1] และใช้ Augmentation เช่น Rotation, Flip, Brightness Adjustment 
เพ่ือเพ่ิมความหลากหลายของข้อมูลและลดความเสี่ยงจาก Overfitting 

3.3.2.2  Training 
การฝึกใช้ Optimizer คือ Stochastic Gradient Descent (SGD) ที่มีความเหมาะสมต่อการ

เรียนรู ้ที ่มี Dataset ขนาดใหญ่ และใช้ Learning Rate Scheduling เพื ่อลดอัตราการเรียนรู ้ใน
ระหว่าง Epoch 
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Loss Function ที่ใช้คือ Binary Cross Entropy (BCE) สำหรับการ Classification Complete 
IoU (CIoU) Loss สำหรับ Bounding Box Regression เพ่ือให้การจับขอบเขตวัตถุแม่นยำข้ึน 

3.3.2.3  Validation 
ทุก ๆ 5 Epoch โมเดลจะถูกประเมินบน Validation Set เพื่อคำนวณค่า Precision, Recall, 

F1-score และ mAP (mean Average Precision) ซึ ่งช ่วยสะท้อนความสามารถของโมเดลใน
ระหว่างการเรียนรู้ 

3.3.2.4  Early Stopping 
เพื่อลดความเสี่ยงจาก Overfitting ได้มีการกำหนดเงื่อนไข Early Stopping หาก Validation 

Loss ไม่ลดลงภายใน 20 Epoch ระบบจะหยุดการฝึกโดยอัตโนมัติและเลือกโมเดลที่ดีที่สุด (Best.pt) 
สำหรับใช้งานจริง 

3.3.3 การประเมินประสิทธิภาพ (Evaluation Metrics) 
เพื่อประเมินคุณภาพของโมเดลหลังการฝึก ได้ใช้เกณฑ์มาตรฐานดังนี้  Precision (ความ

แม่นยำ) เพื ่อว ัดความถูกต้องของการตรวจจับชิ ้นงานเสีย Recall (การครอบคลุม) เพื ่อวัด
ความสามารถในการตรวจจับชิ้นงานเสียทั้งหมด F1-Score คือ ค่ากลางที่สมดุลระหว่าง Precision 
และ Recall mAP@50 และ mAP@50–95 วัดค่าเฉลี่ยความแม่นยำของ Bounding Box ในระดับ 
IoU ต่าง ๆ Confusion Matrix ทีแ่สดงผลการจำแนกแต่ละคลาสของชิ้นงาน [10] 

นอกจากนี้ยังมีการวิเคราะห์เชิงกราฟ เช่น Learning Curve (Training Loss vs Validation 
Loss) (สมการที ่ 3-1) กราฟ Precision/Recall Curve และการแสดง Detection Sample เพ่ือ
ตีความพฤติกรรมของโมเดลอย่างละเอียด 

 

 

(3-1) 

 
เมื่อ LCIoU คือ Complete IoU Loss (ตำแหน่ง Bounding Box) 
 Lobj คือ Objectness Loss (การตรวจจับวัตถุ) 
 Lcls คือ Classification Loss (การจำแนกคลาส) 

 
นอกจากนี้ ยังมีการใช้ตัวชี้วัดที่ใช้เพิ่มเติม ได้แก่ Precision (สมการที่ 2-2) Recall (สมการที่ 

2-3) F1-Score (สมการท ี ่  2-4) และ mAP (mean Average Precision) (สมการท ี ่  2-5) ใช ้ทั้ ง 
mAP50 และ mAP50-95 
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ผู้วิจัยทำการทดลองฝึกโมเดลทั้งหมด 5 รอบ โดยปรับ Hyperparameter เล็กน้อยในแต่ละ
ครั้ง โดยผลลัพธ์ดังแสดงในตารางที ่ 3-1 พบว่า Trial 3 และ 5 ให้ผลดีที่สุด โดยมีค่า Precision 
ประมาณ ร้อยละ 96 และ Recall ประมาณ ร้อยละ 95.8 ค่า mAP50 เฉลี่ยมากกว่า ร้อยละ 97
โมเดลแม่นยำสูง ค่า Loss ลดลงอย่างต่อเนื่อง ไม่มี Overfitting ชัดเจน 

 
ตารางท่ี 3-1 ตารางแสดงผลการฝึกโมเดล 

ฝึกรอบท่ี Precision Recall F1-Score mAP50 
mAP50-

95 
Training 

Loss 
Validation 

Loss 
1 94.1% 93.5% 93.8% 96.0% 91.2% 0.051 0.067 

2 95.2% 94.6% 94.9% 96.7% 92.1% 0.044 0.060 

3 96.0% 95.5% 95.7% 97.1% 92.8% 0.039 0.056 

4 95.6% 95.0% 95.3% 96.8% 92.5% 0.041 0.058 

5 96.2% 95.8% 96.0% 97.3% 93.0% 0.037 0.054 

 
3.3.4  กราฟการฝึก (Learning Curves) 

ผลการฝึกโมเดลสามารถอธิบายผ่านกราฟการเรียนรู้ ซึ่งสะท้อนให้เห็นถึงพฤติกรรมของ
โมเดลในระหว่างการปรับค่าพารามิเตอร์และการเรียนรู้จากข้อมูล ในส่วนนี้ผู้วิจัยได้วิเคราะห์ทั้ง  ค่า 
Loss, Precision, Recall และ  Confusion Matrix โ ด ย เป ร ี ย บ เท ี ยบท ั ้ ง  Training Set และ 
Validation Set เพ่ือตรวจสอบว่ามีแนวโน้มการเรียนรู้ที่ดีและไม่เกิด Overfitting 

โดยกราฟ Training Loss แสดงให้เห็นว ่าค่า Training Loss ลดลงอย่างต่อเนื ่องจาก
ประมาณ 0.15 ในช่วงเริ่มต้นของการฝึก เหลือเพียง 0.037 เมื่อสิ้นสุดที่ Epoch ที่ 100 ในขณะที่ 
Validation Loss ลดลงจากค่าเริ ่มต้นประมาณ 0.17 จนเหลือเพียง 0.054 และเริ่มมีค่าคงที่หลัง 
Epoch ที่ 100 พฤติกรรมเช่นนี้สะท้อนว่าโมเดลมีการเรียนรู้ที่มีประสิทธิภาพ โดยไม่เกิด Overfitting 
อย่างมีนัยสำคัญ เพราะค่า Training Loss และ Validation Loss มีแนวโน้มใกล้เคียงกันและคงที่ใน
ระยะหลังของการฝึก [10] 

กราฟ Precision และ Recall แสดงผลการประเมินความแม่นยำและความครอบคลุมของ
โมเดล พบว่าค่า Precision เพิ่มขึ้นจาก ร้อยละ 85 ในช่วงแรก จนสูงถึงร้อยละ 96 หลังการฝึกครบ 
100 Epoch ในขณะที่ค่า Recall เริ่มต้นที่ ร้อยละ83 และเพิ่มขึ้นเป็นร้อยละ 95 ในช่วงท้าย การที่
ทั้งสองค่ามีทิศทางเพ่ิมขึ้นต่อเนื่องและคงที่ใน Epoch หลัง ๆ แสดงว่าโมเดลสามารถปรับตัวได้ดีและ
มีเสถียรภาพสูง ซึ่งเป็นคุณสมบัติที่เหมาะสมสำหรับการนำไปใช้งานจริงบนสายพานลำเลียง  
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ภาพที่ 3-2 กราฟ Training Loss 

 

 

ภาพที่ 3-3 กราฟ Precision และ Recall 
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3.3.5  Confusion Matrix (ค่าเฉลี่ยจากการทดลอง 5 รอบ) 
ผลการวิเคราะห์ด้วย Confusion Matrix ซึ่งคำนวณจากค่าเฉลี่ยการทดลองทั้งหมด 5 รอบ 

สะท้อนถึงความสามารถของโมเดลในการจำแนกประเภทชิ้นงาน โดยผลลัพธ์มีดังนี้ ขวดที่ไม่มีฝา
สามารถตรวจจับได้ถูกต้องถึง ร้อยละ98 ขวดที่ไม่มีฉลากตรวจจับได้ถูกต้อง 97% และในกรณีขวดที่
สมบูรณ์ โมเดลสามารถระบุได้ถูกต้องถึง ร้อยละ 99 

จากผลลัพธ์ดังกล่าวสามารถสรุปได้ว่า โมเดล YOLOv8 ที่พัฒนาขึ้นมีความสามารถสูงในการ
ตรวจจับตำหนิประเภทต่าง ๆ โดยเฉพาะในกรณีที่ขวดสมบูรณ์หรือไม่มีฝา ซึ่งระบบสามารถตรวจจับ
ได้อย่างแม่นยำมากกว่า ร้อยละ 97 อย่างไรก็ตามโดยรวมแล้วถือว่าอยู่ในระดับที่สามารถนำไปใช้งาน
จริงในสายการผลิตได้อย่างมีประสิทธิภาพ [10], [60] 
 
3.4  การออกแบบและพัฒนาระบบ 

การออกแบบระบบสำหรับตรวจสอบชิ้นงานเสียบนสายพานลำเลียงในงานวิจัยนี้มีเป้าหมาย
หลักเพื่อสร้างระบบที่มีความแม่นยำสูง สามารถทำงานได้แบบ Real-Time ต้นทุนต่ำ และยังคงมี
ความสามารถในการเชื่อมต่อกับฮาร์ดแวร์จริงในสายการผลิต ระบบดังกล่าวถูกออกแบบโดยอาศัย
แนวคิดการผสมผสานระหว่างซอฟต์แวร์ประมวลผลภาพและฮาร์ดแวร์ควบคุมเชิงกลไก เพื่อให้ได้ ผล
เฉลย (Solution) ที่ครบวงจรและสามารถนำไปใช้งานได้จริงในโรงงานอุตสาหกรรมขนาดกลางและ
ขนาดเล็ก โดยระบบที่พัฒนาขึ้นแบ่งออกเป็นสามองค์ประกอบหลัก ได้แก่ กระบวนการประมวลผล
ภาพ กระบวนการตัดสินใจด้วยโมเดล YOLOv8 และกระบวนการส่งสัญญาณควบคุมไปยังอุปกรณ์
จริง [10, 11], [47] 

3.4.1 สถาปัตยกรรมระบบ (System Architecture) 
สถาปัตยกรรมของระบบถูกออกแบบให้อยู ่ในลักษณะ  Client-Edge Hybrid System ซึ่ง

หมายถึงการใช้คอมพิวเตอร์ส่วนกลางหรือ Google Colab สำหรับขั้นตอนการฝึกโมเดล (Training) 
และใช้เครื ่อง PC ในโหมด Offline หรืออุปกรณ์ Edge Device เช่น Jetson Nano สำหรับการ
ประมวลผลจริง (Inference) บนสายพานลำเลียง สถาปัตยกรรมนี้ถูกแบ่งออกเป็นห้าโมดูลที่ทำงาน
ประสานกันดังนี้ [10, 11] 
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ภาพที่ 3-4 System Workflow Flow Chart 

โมดูลแรกคือ Image Acquisition Module ซึ ่งทำหน้าที ่ในการเก็บภาพจาก Webcam ที่
ติดตั ้งเหนือสายพาน โดยกล้องที ่ใช้มีความละเอียดระดับ Full HD (1080p) และมีอัตราการจับ
ภาพต่อเนื่องที่ประมาณ 30 เฟรมต่อวินาที (FPS) ข้อมูลภาพเหล่านี้จะถูกส่งเข้าระบบผ่านไลบรารี 
OpenCV เพ่ือเตรียมพร้อมสำหรับขั้นตอนถัดไป [35] 

โมดูลที ่สองคือ Preprocessing Module โดยใช้ Python ร่วมกับ OpenCV ทำหน้าที ่ปรับ
ภาพให้อยู่ในขนาดมาตรฐาน 640×640 พิกเซล พร้อมทำ Normalization ของค่าพิกเซลให้อยู่ในช่วง 
[0,1] เพื่อให้ข้อมูลพร้อมสำหรับการป้อนเข้าสู่โมเดล อีกทั้งยังใช้เทคนิคการลดสัญญาณรบกวน เช่น 
Gaussian Blur รวมถึงการปรับ Histogram Equalization เพ่ือลดปัญหาจากแสงและเงาที่อาจส่งผล
ต่อความแม่นยำในการตรวจจับ [33], [35] 
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โมดูลที่สามคือ Inference Module ซึ่งเป็นหัวใจสำคัญของระบบ ใช้โมเดล YOLOv8 ที่ผ่าน
การฝึกด้วยชุดข้อมูลขวดบรรจุภัณฑ์ที ่มีการ Label ไว้เรียบร้อยแล้ว โดยโมเดลในรูปแบบไฟล์  
best.pt จะถูกโหลดเข้าส ู ่ระบบเพื ่อทำการตรวจจับแบบเฟรมต่อเฟรม ( Frame-by-Frame 
Processing) จากนั้นจะส่งผลลัพธ์ออกมาในรูปแบบ Bounding Box และ Class Label ที่แสดง
ประเภทของขวด เช่น “No Cap” หรือ “No Label” [10] 

โมดูลที่สี่คือ Decision Module ซึ่งทำหน้าที่ตีความผลลัพธ์ที่ได้จากโมเดล YOLOv8 โดยมี
ตรรกะการทำงานที่ชัดเจน หากโมเดลตรวจพบว่าขวดที่ผ่านกล้องตรวจสอบมีตำหนิ  (Defect) ระบบ
จะส่งสัญญาณค่า “1” ซึ่งหมายถึง Reject Signal ไปยังอุปกรณ์ควบคุม แต่หากตรวจพบว่าขวดอยู่ใน
สภาพปกติ ระบบจะส่งสัญญาณค่า “0” หรือ Pass Signal เพื่อให้ขวดผ่านต่อไปบนสายพานโดยไม่
ถูกตัดออก [10] 

โมดูลสุดท้ายคือ Hardware Control Module ซึ่งประกอบด้วย Arduino Uno ที่ทำหน้าที่
เป็นตัวกลางในการรับสัญญาณจากคอมพิวเตอร์ผ่าน Serial Communication (USB to Arduino) 
จากนั้น Arduino จะประมวลผลสัญญาณและสั่งการ Relay รวมถึง Solenoid Valve เพื่อควบคุม
แขนกล Pneumatic Rejector ให้ทำการผลักขวด Defect ออกจากสายพานอย่างแม่นยำ [47], [74] 

การทำงานร่วมกันของทั้งห้าโมดูลนี้ทำให้ระบบตรวจสอบชิ้นงานเสียสามารถดำเนินการได้อย่าง
ครบวงจร ตั้งแต่การจับภาพ การประมวลผล การตัดสินใจ ไปจนถึงการสั่งงานฮาร์ดแวร์จริง ผลลัพธ์ที่
ได้คือระบบที่สามารถตอบสนองได้แบบ Real-time มีความแม่นยำสูง และมีต้นทุนต่ำเมื่อเทียบกับ
ระบบตรวจสอบคุณภาพเชิงพาณิชย์ที่มีราคาแพงหลายเท่าตัว 

3.4.2 การออกแบบซอฟต์แวร์ (Software Design) 
การออกแบบซอฟต์แวร์สำหรับระบบตรวจสอบชิ้นงานเสียบนสายพานลำเลียงถูกพัฒนาขึ้นโดย

คำนึงถึงความสามารถในการทำงานแบบ Real-time ความยืดหยุ่นในการใช้งาน และความสะดวกใน
การบำรุงร ักษา โครงสร้างของซอฟต์แวร์แบ่งออกเป็นสามชั ้นหลัก ได้แก่  Frontend Layer, 
Backend Layer และ Database Layer ซึ ่งทำงานประสานกันเพื ่อให้ระบบมีความสมบูรณ์และ
รองรับการใช้งานจริงในโรงงานอุตสาหกรรม 

ในส่วนแรก Frontend Layer ถูกออกแบบให้ทำหน้าที ่เป็นส่วนติดต่อกับผู ้ใช้งาน โดยใช้ 
OpenCV ควบคู่กับ Tkinter เพื ่อสร้างส่วนติดต่อผู ้ใช้แบบกราฟิก (GUI) ภาพจาก Webcam ที่
ตรวจจับขวดบนสายพานจะแสดงผลแบบ Real-time โดยมีกรอบสีเขียวแสดงถึงขวดที่ปกติและกรอบ
สีแดงแสดงถึงขวดที่ตรวจพบว่ามี Defect เพื่อให้ผู้ปฏิบัติงานสามารถรับรู้ผลลัพธ์ได้ทันที นอกจากนี้
ยังมีหน้าต่าง Log Window ที่บันทึกผลการตรวจจับในแต่ละเฟรม รวมถึงจำนวน Defect ที่ตรวจพบ
สะสม ซึ่งช่วยให้ผู้ใช้งานสามารถติดตามสถานะของระบบได้อย่างต่อเนื่อง [35], [75] 
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ชั ้นที ่สองคือ Backend Layer ซึ ่งเป็นส่วนที ่รับผิดชอบการประมวลผลหลัก โดยใช้ภาษา 
Python เชื ่อมต่อกับโมเดล YOLOv8 ของ Ultralytics ที่ผ่านการฝึกมาแล้วเพื่อตรวจจับ Defect 
ของขวดที่ปรากฏบนสายพาน นอกจากนี้ยังมีการใช้ Serial Library (Pyserial) เพื่อส่งข้อมูลจาก
ระบบประมวลผลไปยังบอร์ด Arduino สำหรับควบคุมกลไก Rejector โดย Backend Layer ยังถูก
ออกแบบให้รองรับการจัดเก็บข้อมูลภาพของขวดที่ตรวจพบว่า Defect เพื่อใช้เป็นฐานข้อมูลสำหรับ
การวิเคราะห์ย้อนหลังหรือการปรับปรุงโมเดลในอนาคต [10], [47], [65] 

ส่วนสุดท้ายคือ Database Layer ซึ่งมีลักษณะเป็นองค์ประกอบเสริม (Optional) เพื่อเพ่ิม
ประสิทธิภาพการติดตามคุณภาพในระยะยาว ข้อมูลที่เก็บในชั้นนี้ประกอบด้วยรายละเอียดของผล
การตรวจจับ เช่น วันที่และเวลาที่ตรวจสอบ จำนวนขวดที่ผ่านการตรวจสอบ และประเภท Defect ที่
พบ ระบบยังสามารถ Export ข้อมูลออกมาในรูปแบบ CSV หรือ Excel เพื่อให้ฝ่ายควบคุมคุณภาพ 
(QC) สามารถนำข้อมูลไปวิเคราะห์ต่อยอดและติดตามคุณภาพของการผลิตในเชิงสถิติได้อย่างเป็น
ระบบ [10], [35] 

3.4.3 การออกแบบฮาร์ดแวร์ (Hardware Design) 
การออกแบบฮาร์ดแวร์ของระบบตรวจสอบชิ้นงานเสียบนสายพานลำเลียงในงานวิจัยนี ้มี

ความสำคัญอย่างยิ่ง เนื่องจากเป็นส่วนที่ทำหน้าที่รับข้อมูลจริงจากกระบวนการผลิตและส่งผลลัพธ์ไป
ควบคุมกลไกเชิงกายภาพ เพื่อให้ระบบสามารถทำงานได้ครบวงจรตั้งแต่การตรวจสอบจนถึงการคัด
แยกขวด Defect ออกไป โดยองค์ประกอบหลักของฮาร์ดแวร์ในระบบนี้ประกอบด้วยสายพานลำเลียง 
กล้องตรวจสอบ แสงสว่าง อุปกรณ์ควบคุมอิเล็กทรอนิกส์ และกลไก Rejector 

องค์ประกอบแรกคือ สายพานลำเลียง (Conveyor) ซึ่งถูกออกแบบมาเพื่อจำลองสภาพการ
ทำงานจริงของโรงงาน โดยสายพานมีความกว้าง 10 เซนติเมตร ความยาว 1.2 เมตร และสามารถ
ปรับความเร็วได้ตั้งแต่ 0.5 – 3 เมตรต่อวินาที เพื่อรองรับการทดลองในสภาวะที่หลากหลาย ทั้ง
ความเร็วต่ำและความเร็วใกล้เคียงกับสายการผลิตจริง จุดประสงค์ของการปรับความเร็วได้คือเพ่ือ
ทดสอบความสามารถของโมเดลในการตรวจจับ Defect ภายใต้ความกดดันจากเวลาและการเคลื่อนที่
ที่เร็วขึ้น [11] 

องค์ประกอบที่สองคือ กล้อง (Webcam 1080p) ซึ่งทำหน้าที่เป็นอุปกรณ์หลักในการเก็บ
ข้อมูลภาพ กล้องถูกติดตั้งที่ตำแหน่งกึ่งกลางของสายพานในระยะสูงประมาณ 30 เซนติเมตรจาก
พื้นผิวสายพาน เพื่อให้มุมมองของกล้องสามารถครอบคลุมทั้งตัวขวดได้อย่างครบถ้วน การเลือกใช้ 
Webcam ที่มีความละเอียด Full HD 1080p ช่วยให้ได้ภาพท่ีคมชัดเพียงพอต่อการตรวจจับ Defect 
ในรายละเอียดเล็กน้อย เช่น ฉลากเอียงหรือการแตกร้าวของขวด [35] 

องค์ประกอบที่สามคือ ระบบแสงสว่าง (LED Ring Light) ซึ่งทำหน้าที่ลดผลกระทบจากแสง
แวดล้อม เช่น เงาสะท้อนหรือความมืดที่อาจรบกวนการตรวจจับ การใช้แสงในลักษณะ Ring Light 
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ช่วยให้เกิดการกระจายแสงที่สม่ำเสมอรอบวัตถุ ทำให้โมเดล YOLOv8 สามารถประมวลผลและ
ตรวจจับ Defect ได้แม่นยำมากขึ้น [33] 

องค ์ประกอบที ่ส ี ่ค ือ  Arduino Uno ร ่วมก ับ Relay Module ซ ึ ่ งเป ็นอ ุปกรณ์ควบคุม
อิเล็กทรอนิกส์ ทำหน้าที่รับสัญญาณการตรวจจับจาก Python ผ่านพอร์ต USB และส่งต่อสัญญาณไป
ยังอุปกรณ์กลไกต่อไป Relay Module ถูกใช้เพื่อสลับการจ่ายกระแสไฟฟ้าให้กับ Solenoid Valve 
ทำให้ระบบสามารถควบคุมอุปกรณ์ Pneumatic Rejector ได้อย่างแม่นยำและทันเวลา 

องค์ประกอบสุดท้ายคือ Pneumatic Rejector ซึ่งเป็นกลไกที่ทำหน้าที่คัดแยกขวด Defect 
ออกจากสายพาน โดย Rejector สามารถตอบสนองได้ภายในเวลาเพียง 100 มิลลิวินาทีหลังจาก
ได้รับสัญญาณจาก Arduino ทำให้มั ่นใจได้ว่าขวด Defect จะถูกดันออกไปจากสายพานอย่าง
ทันท่วงทีโดยไม่ส่งผลกระทบต่อการไหลของสายการผลิต [47], [65] 

กล่าวโดยสรุป การออกแบบฮาร์ดแวร์ทั้งหมดนี้มีจุดประสงค์เพ่ือสร้างระบบที่สามารถทำงานได้
จริงในสายพานลำเลียง โดยเน้นการทำงานที่ แม่นยำ รวดเร็ว และสอดคล้องกับสภาวะอุตสาหกรรม 
ขณะเดียวกันยังคงควบคุมต้นทุนได้ต่ำ เนื่องจากใช้อุปกรณ์ราคาประหยัดแต่มีประสิทธิภาพสูงเมื่อ
ทำงานร่วมกับโมเดล YOLOv8 

3.4.4 การทำงานแบบ Real-time 
การทำงานแบบ Real-time ของระบบตรวจสอบชิ้นงานเสียถือเป็นหัวใจสำคัญของงานวิจัยนี้ 

เนื่องจากความสามารถในการประมวลผลและตัดสินใจได้อย่างทันท่วงทีเป็นสิ่งจำเป็นสำหรับการนำ
ระบบไปใช้งานจริงในสายพานลำเลียงของโรงงานอุตสาหกรรม โดยกลไกของระบบถูกออกแบบให้มี
การทำงานแบบต่อเนื่องในแต่ละเฟรมภาพ ตั้งแต่การจับภาพ การตรวจจับตำหนิ ไปจนถึงการส่ง
สัญญาณควบคุมไปยังกลไก Rejector 

ในขั้นแรก Webcam จะทำหน้าที่จับภาพจากสายพานด้วยอัตรา 30 เฟรมต่อวินาที หรือทุก ๆ 
1/30 วินาที ภาพที่ได้จะถูกส่งเข้าสู่คอมพิวเตอร์ทันทีเพื่อเข้าสู่กระบวนการประมวลผลเบื้องต้น 
จากนั ้นภาพดังกล่าวจะถูกป้อนเข้าสู่โมเดล  YOLOv8 ซึ ่งได้รับการฝึกมาก่อนหน้านี ้เพื ่อทำการ
ตรวจจับ Defect ของขวดที่ปรากฏในแต่ละเฟรม กระบวนการประมวลผลนี้ใช้เวลาเฉลี่ยประมาณ 
40 มิลลิวินาทีต่อเฟรม หรือกล่าวอีกนัยหนึ่งคือระบบสามารถทำงานได้ด้วยความเร็วสูงสุดประมาณ 
25 – 30 เฟรมต่อวินาที ทำให้สามารถรองรับการทำงานแบบ Real-time ได้อย่างราบรื่น 

หากโมเดล YOLOv8 ตรวจพบว่ามี Defect ในขวด เช่น ไม่มีฝาปิด ไม่มีฉลาก ฉลากเอียง หรือ
ขวดแตก Python Script ที ่ทำหน้าที ่เป็น Decision Module จะทำการตีความผลลัพธ์และส่ง
ส ัญญาณดิจ ิทัลในรูปของ Reject Signal ผ่านพอร์ต USB ไปยังบอร์ด Arduino Uno จากนั้น 
Arduino จะสั ่งงานผ่าน Relay เพื ่อเปิด Solenoid Valve และกระตุ ้นให้แขนกล  Pneumatic 
Rejector ทำการดันขวด Defect ออกจากสายพานอย่างแม่นยำและทันเวลา 
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ในกรณีที่โมเดลไม่ตรวจพบ Defect Python Script จะส่งสัญญาณ Pass Signal เพ่ือปล่อยให้
ขวดผ่านไปตามสายพานโดยไม่ถูกตัดออก การทำงานเช่นนี้เกิดขึ้นซ้ำอย่างต่อเนื่องในทุกเฟรมภาพ 
ทำให้ระบบสามารถตรวจสอบคุณภาพของขวดได้ตลอดเวลาโดยไม่เกิดการสะดุดหรือหน่วงช้า 

กล่าวโดยสรุป ระบบที่พัฒนาขึ ้นสามารถทำงานแบบ Real-time ได้อย่างสมบูรณ์ โดยมี 
Latency ต่ำ ความเร็วในการประมวลผลสูง และความแม่นยำในการตัดสินใจที่เพียงพอสำหรับการ
ประยุกต์ใช้ในสายพานลำเลียงจริง ถือเป็นการยืนยันว่าระบบที่พัฒนาขึ้นมีความพร้อมทั้งในเชิง
เทคนิคและการใช้งานจริงในภาคอุตสาหกรรม [10, 11], [35], [65] 

3.4.5 การประเมินต้นทุน (Cost Evaluation) 
การประเมินต้นทุนเป็นอีกหนึ่งขั้นตอนท่ีสำคัญ เนื่องจากสะท้อนให้เห็นถึงความเป็นไปได้ในการ

นำระบบที่พัฒนาขึ้นไปใช้งานจริงในโรงงานอุตสาหกรรม โดยเฉพาะโรงงานขนาดกลางและขนาดเล็ก
ซึ่งมักมีข้อจำกัดด้านงบประมาณ งานวิจัยนี้ได้ทำการรวบรวมรายการอุปกรณ์ท่ีใช้ในการสร้างต้นแบบ
ระบบตรวจสอบชิ้นงานเสีย พร้อมทั้งเปรียบเทียบกับค่าใช้จ่ายของเครื่องตรวจสอบคุณภาพเชิง
พาณิชย์ที่มีวางขายในท้องตลาด 

จากการประเมินพบว่าระบบต้นแบบมีต้นทุนรวมทั้งสิ ้นประมาณ  46,450 บาท ดังแสดงใน
ตารางที่ 3-2 ซึ่งถือว่าต่ำมากเมื่อเปรียบเทียบกับเครื่องตรวจสอบคุณภาพเชิงพาณิชย์หรือ Vision 
Sensor ที่มักมีราคาสูงตั้งแต่ 300,000 – 500,000 บาทต่อชุด การลดต้นทุนได้กว่า 7 – 10 เท่าโดย
ยังคงรักษาประสิทธิภาพการทำงานให้อยู่ในระดับที่ใกล้เคียงกับเครื่องเชิงพาณิชย์ถือเป็นจุดแข็งสำคัญ
ของงานวิจัยนี้ [10, 11], [47] 

นอกจากนี้ หากพิจารณาต้นทุนในมิติของการลงทุนระยะยาว ระบบที่พัฒนาขึ้นยังมีความ
ได้เปรียบเนื่องจากใช้อุปกรณ์ที่หาได้ทั่วไป ราคาประหยัด และสามารถบำรุงรักษาได้ง่ายโดยบุคลากร
ในโรงงาน ไม่จำเป็นต้องพึ่งพาผู้จัดจำหน่ายเฉพาะทางเหมือนกับ Vision Sensor เชิงพาณิชย์ที่มี
ค่าใช้จ่ายสูงในการซ่อมบำรุงและอัปเกรด อีกท้ังระบบนี้ยังสามารถปรับปรุงหรือฝึกโมเดลใหม่ได้อย่าง
ต่อเนื่องโดยไม่ต้องลงทุนซื้ออุปกรณ์ใหม่ทั้งหมด 

กล่าวโดยสรุป การประเมินต้นทุนชี้ให้เห็นว่างานวิจัยนี้สามารถสร้างระบบตรวจสอบชิ้นงานเสีย
ที่ทั้ง คุ้มค่า ประหยัด และสามารถนำไปใช้งานจริงได้ โดยเฉพาะในโรงงานอุตสาหกรรมขนาดกลาง
และขนาดเล็กท่ีไม่สามารถลงทุนในระบบตรวจสอบคุณภาพราคาแพงได้ 
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ตารางท่ี 3-2 แสดงรายละเอียดของต้นทุนที่ใช้ในโครงการวิจัยครั้งนี้ 

อุปกรณ์ จำนวน ราคาต่อหน่วย (บาท) รวม (บาท) 
Webcam 1080p 1 500 500 

Arduino Uno R3 1 600 600 

Relay Module 1 70 70 
Pneumatic Cylinder + Solenoid Valve 1 2,500 2,500 

Conveyor Belt (ขนาดเล็ก) 1 2000 2000 
PC (i5 + GPU RTX3060) 1 20000 20000 

รวม 25,670 

 
3.5  การประเมินคุณภาพและความพึงพอใจ 

การประเมินคุณภาพและความพึงพอใจของระบบที่พัฒนาขึ้นถือเป็นขั้นตอนที่สำคัญในการ
ยืนยันว่าระบบตรวจสอบชิ้นงานเสียบนสายพานลำเลียงสามารถใช้งานได้จริงในสภาวะโรงงาน
อุตสาหกรรม การประเมินแบ่งออกเป็น 2 ด้านหลัก ได้แก่ การประเมินคุณภาพเชิงเทคนิค 
(Technical Evaluation) และ  การประเม ินความพ ึงพอใจของผ ู ้ ใช ้ งาน (User Satisfaction 
Evaluation) ซึ่งผลลัพธ์ทั้งสองด้านจะช่วยสะท้อนให้เห็นถึงประสิทธิภาพ ความเหมาะสม และความ
คุ้มค่าของระบบในเชิงปฏิบัติ 

3.5.1 การประเมินคุณภาพเชิงเทคนิค 
ในด้านคุณภาพเชิงเทคนิค ผู้วิจัยทำการทดสอบระบบโดยใช้ Test Set จำนวน 2,500 ภาพ ซึ่ง

เป็นข้อมูลที่โมเดลไม่เคยเห็นมาก่อน และจำลองสภาวะแวดล้อมที่หลากหลาย ทั้งสภาพแสง ความเร็ว
สายพาน และความแตกต่างของตำหนิ เพื ่อทดสอบประสิทธิภาพของโมเดล YOLOv8 อย่าง
ครอบคลุม  

3.5.2 การประเมินความพึงพอใจของผู้ใช้งาน 
เพื ่อประเมินความเหมาะสมของระบบในมุมมองของผู ้ ใช ้งานจร ิง ผ ู ้ว ิจ ัยได้ออกแบบ  

แบบสอบถามความพึงพอใจ โดยใช้มาตราส่วน Likert Scale 5 ระดับ (1 หมายถึง น้อยที่สุด ถึง 5 
หมายถึง มากที่สุด) ครอบคลุม 4 ด้านหลัก ได้แก่ ประสิทธิภาพการทำงาน (Performance) หรือ
ความแม่นยำ ความเร็วในการตรวจจับ Defect ความสะดวกในการใช้งาน (Usability) หรือ ความง่าย
ต่อการใช้งานของ GUI และการติดตามผลผ่าน Log ความน่าเชื่อถือและเสถียรภาพ (Reliability) 
หรือ การทำงานต่อเนื่องโดยไม่ล่ม ความมั่นใจของผู้ปฏิบัติงาน ความคุ้มค่า (Cost-effectiveness): 
ความคุ้มค่าของระบบเมื่อเทียบกับ Vision Sensor เชิงพาณิชย์



 

 

 

 

 

บทท่ี 4 
ผลการดำเนินงานวิจัย 

 
บทนี้ผู้วิจัยได้นำเสนอผลลัพธ์ที่ได้จากการดำเนินงานตามกระบวนการวิจัยที่ได้กล่าวไว้ในบท

ที่ 3 โดยเน้นการทดสอบ ประเมิน และวิเคราะห์ประสิทธิภาพของระบบตรวจจับชิ้นงานเสียบน
สายพานลำเลียงอัตโนมัติที่พัฒนาขึ้น การทดลองครอบคลุมทั้งส่วนของการฝึกโมเดล YOLOv8 การ
ประเมินผลการตรวจจ ับตำหน ิ และการทดสอบระบบจริงแบบ Real-time เพื ่อให ้เห ็นถึง
ความสามารถของระบบในสภาวะใกล้เคียงกับการใช้งานจริง นอกจากนี้ยังได้มีการเปรียบเทียบผลกับ
งานวิจัยก่อนหน้า รวมถึงการประเมินความพึงพอใจของผู้ใช้งาน เพื่อยืนยันถึงประสิทธิผลของระบบ
และความเหมาะสมในการนำไปใช้จริงในภาคอุตสาหกรรม 

4.1 ผลการพัฒนาแบบจำลอง 
4.2 ผลการประเมินด้วย Confusion Matrix 
4.3 ผลการทดสอบระบบจริงแบบ Real-time 
4.4 ผลการทดสอบระบบภายใต้เงื่อนไขต่าง ๆ 
4.5 การประเมินความพึงพอใจของผู้ใช้งาน 
4.6 การเปรียบเทียบกับงานวิจัยก่อนหน้า 
4.7 บทสรุปผลการดำเนินงาน 

 
4.1  ผลการพัฒนาแบบจำลอง 

การพัฒนาแบบจำลองในงานวิจัยนี้เป็นขั้นตอนสำคัญที่ส่งผลโดยตรงต่อประสิทธิภาพของระบบ
ตรวจสอบชิ ้นงานเสีย โดยโมเดลที ่ใช้คือ  YOLOv8 (You Only Look Once Version 8) ซึ ่งเป็น
สถาปัตยกรรมการตรวจจับวัตถุรุ่นล่าสุดของบริษัท Ultralytics ที่ได้รับการปรับปรุงทั้งด้านความ
แม่นยำ ความเร็วในการประมวลผล และความสามารถในการเรียนรู้จากข้อมูลจำนวนมากได้ดีกว่ารุ่น
ก่อนหน้า 

ในกระบวนการฝึกโมเดล ชุดข้อมูลที่ใช้ประกอบด้วยภาพจำนวน 25,00 ภาพ ซึ่งได้จากการเก็บ
ข้อมูลจร ิงจากสายพานลำเล ียงและผ่านกระบวนการ  Data Augmentation เพื ่อเพิ ่มความ
หลากหลายของลักษณะตำหนิ (Defect) เช่น การหมุนภาพ การกลับด้าน และการปรับความสว่าง 
ภาพทั้งหมดถูกปรับขนาดเป็น 640×640 พิกเซล เพื่อให้สอดคล้องกับโครงสร้างของโมเดล YOLOv8 
และช่วยให้กระบวนการประมวลผลมีประสิทธิภาพมากขึ้น 
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โมเดลถูกฝึกบนแพลตฟอร์ม Google Colab  ซึ่งใช้ GPU แบบ Tesla T4 และ A100 โดยตั้ง
ค ่าพาราม ิ เตอร ์  Batch Size = 32, จำนวน Epoch = 100 และ Optimizer แบบ  Stochastic 
Gradient Descent (SGD) เพื่อให้การอัปเดตน้ำหนักของโมเดลเกิดขึ้นอย่างราบรื่นในแต่ละรอบการ
เรียนรู้ กระบวนการฝึกใช้ Loss Function แบบผสมระหว่าง Binary Cross Entropy (BCE) สำหรับ
การจำแนกประเภท (Classification) และ Complete IoU (CIoU) Loss สำหร ับการคำนวณ
ตำแหน่งกรอบ Bounding Box 

จากผลการฝึกโมเดล พบว่าโมเดลมีพฤติกรรมการเรียนรู้ที่ดีและมีเสถียรภาพ โดยค่า  Training 
Loss ลดลงจาก 0.15 ในช่วงเริ ่มต้นของการฝึก เหลือเพียง 0.037 หลังจากผ่านไป 100 Epoch 
ในขณะที่ค่า Validation Loss ลดลงจาก 0.17 เหลือเพียง 0.054 และเริ่มคงที่หลัง Epoch ที่ 120 
ซ ึ ่ งเป ็นส ัญญาณชัดเจนว ่าโมเดลได ้เข ้าส ู ่ภาวะสมด ุลระหว ่างการเร ียนร ู ้และการทำนาย 
(Generalization) โดยไม่เกิด Overfitting 

กราฟการเปรียบเทียบระหว่าง Training Loss และ Validation Loss แสดงดังในภาพที่ 4.1 
ซึ ่งเป็นการยืนยันเชิงภาพถึงแนวโน้มการลดลงของค่า Loss ทั้งสองแบบพร้อมกันในลักษณะที่
ใกล้เคียงกัน โดยไม่มีการแยกตัวหรือการเพิ่มขึ้นของ Validation Loss ในช่วงท้ายของการฝึก การที่
กราฟทั้งสองมีแนวโน้มคงที่หลัง Epoch 120 แสดงให้เห็นว่าโมเดลได้เรียนรู้คุณลักษณะของข้อมูล
อย่างเพียงพอและสามารถหยุดการฝึกได้ตามหลัก Early Stopping เพ่ือป้องกันการเรียนรู้ซ้ำซ้อน 

 

 
ภาพที่ 4-1 Training vs Validation Loss Curve 

 
เมื่อวิเคราะห์ผลการฝึกในเชิงตัวเลข พบว่าโมเดลสามารถเรียนรู้ได้อย่างมีประสิทธิภาพ ค่า 

Loss ที่ลดลงต่อเนื ่องสะท้อนถึงความสามารถในการปรับค่าพารามิเตอร์ภายในให้เหมาะสมกับ
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ลักษณะของข้อมูล Defect ซึ่งมีความหลากหลายสูง นอกจากนี้ การที่โมเดลสามารถรักษาแนวโน้ม
ของ Loss ทั้งสองประเภทให้อยู่ในระดับต่ำอย่างสม่ำเสมอในช่วงท้ายของการฝึกยังแสดงให้เห็นว่า
การตั้งค่าพารามิเตอร์ เช่น Learning Rate และ Momentum มีความเหมาะสมกับลักษณะของ 
Dataset ที่ใช้ 

กล่าวโดยสรุป ผลการพัฒนาแบบจำลอง YOLOv8 ในงานวิจัยนี้แสดงให้เห็นว่าโมเดลสามารถ
เรียนรู้ได้อย่างมีประสิทธิภาพ ไม่เกิด Overfitting และมีแนวโน้มของการเรียนรู้ที ่สอดคล้องกับ
หลักการของ Deep Learning สำหรับงานตรวจจับวัตถุ ซึ่งเป็นพื้นฐานสำคัญสำหรับการนำโมเดลไป
ใช้ในการทดสอบระบบจริงในสายพานลำเลียงในขั้นตอนต่อไป 

 
4.2  ผลการประเมินด้วย Confusion Matrix 

หลังจากเสร็จสิ้นกระบวนการฝึกโมเดล YOLOv8 แล้ว ผู้วิจัยได้นำโมเดลที่ได้จากการฝึกซึ่งมี
ประสิทธิภาพสูงสุด (ไฟล์ชื ่อ best.pt) มาทดสอบกับชุดข้อมูลทดสอบ (Test Set) จำนวน 2,500 
ภาพ ซึ่งชุดข้อมูลดังกล่าวเป็นภาพที่โมเดลไม่เคยเห็นมาก่อน เพื่อใช้ในการประเมินความสามารถใน
การจำแนกและตรวจจับตำหนิของขวดในสภาวะที่ใกล้เคียงกับการใช้งานจริง 

การประเมินผลใช้เครื่องมือหลักคือ Confusion Matrix ซึ่งเป็นวิธีมาตรฐานในการวิเคราะห์
ผลลัพธ์ของโมเดลการจำแนกประเภท โดย Confusion Matrix แสดงจำนวนกรณีที่โมเดลทำนาย
ถูกต้องและผิดพลาดในแต่ละคลาส ทำให้สามารถวิเคราะห์เชิงลึกได้ว่าคลาสใดที่โมเดลสามารถ
ตรวจจับได้แม่นยำ และคลาสใดที่ยังมีแนวโน้มเกิดความสับสนกับคลาสอื่น ซึ่งถือเป็นตัวชี้วัดสำคัญ
ของคุณภาพโมเดลในเชิงปฏิบัติ 

ผลการทดสอบแสดงให้เห็นว่า โมเดลสามารถตรวจจับได้อย่างแม่นยำสูงในทุกประเภทของ
ตำหนิ โดยเฉพาะอย่างยิ่งคลาส “ไม่มีฝา” (No Cap) และ “ปกติ” (Normal) ซึ่งเป็นสองคลาสที่มี
ความชัดเจนทางลักษณะภาพมากที ่ส ุด มีอัตราการตรวจจับถูกต้องสูงถึง  ร้อยละ 98 และ 99 
ตามลำดับ ส่วนคลาส “ไม่มีฉลาก” (No Label) มีอัตราความถูกต้อง ร้อยละ 97 ขณะที่คลาส “ฉลาก
เอียงหรือซ้อน” (Tilted/Overlapped Label) และ “แตกหรือบิดเบี ้ยว” (Broken/Deformed 
Bottle) มีความถูกต้อง ร้อยละ 95 และ 93 ตามลำดับ ซึ่งแม้จะต่ำกว่าเล็กน้อยแต่ยังอยู่ในระดับที่ถือ
ว่าดีมากสำหรับงานตรวจจับแบบ Real-time 

จากการวิเคราะห์ Confusion Matrix อย่างละเอียดพบว่า ความผิดพลาดส่วนใหญ่เกิดจากการ
จำแนกผิดระหว่างคลาส “ฉลากเอียง/ซ้อน” กับ “ไม่มีฉลาก” ซึ่งเกิดจากลักษณะภาพที่ใกล้เคียงกัน 
โดยเฉพาะในกรณีที่ฉลากเอียงมากจนหลุดออกจากกรอบการมองเห็นบางส่วน ทำให้โมเดลบางครั้ง
ตีความว่าเป็น “ไม่มีฉลาก” นอกจากนี้ ในบางภาพของคลาส “แตก/บิดเบี้ยว” ที่ขวดมีลักษณะบิด
เพียงเล็กน้อย โมเดลอาจจัดเป็นคลาส “ปกติ” เนื่องจากความแตกต่างของลักษณะภาพมีน้อย 
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อย่างไรก็ตาม อัตราความผิดพลาดดังกล่าวอยู่ในระดับที่ยอมรับได้สำหรับการใช้งานจริงในโรงงาน
อุตสาหกรรม 

ภาพที่ 4-2 แสดงข้อมูลจำนวนตัวอย่างที่โมเดลทำนายถูกต้อง (ค่าบนแนวทแยงมุมหลัก) และ
จำนวนการทำนายผิดพลาด (ค่าที่อยู่นอกแนวทแยงมุม) สามารถสังเกตได้ว่าจำนวนค่าที่อยู่บนแนว
ทแยงมุมมีค่าสูงกว่าช่องอื่น ๆ อย่างมีนัยสำคัญ ซึ่งสะท้อนว่าโมเดลมีความแม่นยำและสามารถ
แยกแยะลักษณะของตำหนิแต่ละประเภทได้อย่างมีประสิทธิภาพ 

ผลการประเมินนี้สอดคล้องกับค่าความแม่นยำเชิงสถิติ (Precision, Recall, F1-Score) ที่ได้
จากการฝึกโมเดลในบทก่อนหน้า ซึ่งอยู่ในระดับสูงกว่าร้อยละ 95 ในทุกตัวชี้วัด โดยเฉพาะค่า F1-
Score เฉลี่ยของโมเดลอยู่ที่ 0.962 แสดงให้เห็นว่าโมเดลมีความสมดุลระหว่างความแม่นยำในการ
ทำนายและความสามารถในการตรวจจับวัตถุได้ครอบคลุมทุกประเภท defect 

นอกจากนี้ยังได้ทำการทดสอบซ้ำ (Repetition Test) จำนวน 5 รอบ เพื่อยืนยันความเสถียร
ของผลลัพธ์ พบว่าค่าความแม่นยำ (Accuracy) เฉลี่ยอยู่ที่ ร้อยละ 96.4 ± 0.5 ซึ่งแสดงให้เห็นว่า
โมเดลมีความคงที่สูง และสามารถใช้งานได้อย่างน่าเชื่อถือในสภาวะจริง 

 

 
ภาพที่ 4.2 Confusion Matrix ของโมเดล YOLOv8 
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จากผลลัพธ์ทั้งหมด สามารถสรุปได้ว่า โมเดล YOLOv8 ที่ได้รับการพัฒนาในงานวิจัยนี ้มี
ความสามารถในการจำแนกประเภทของขวดที่มีตำหนิได้อย่างมีประสิทธิภาพสูง ทั้งในแง่ของความ
แม่นยำ เสถียรภาพ และความสามารถในการจัดการกับข้อมูลที่มีลักษณะคล้ายคลึงกันในบางกรณี 
การประเมินด้วย Confusion Matrix จึงเป็นหลักฐานเชิงประจักษ์ท่ียืนยันคุณภาพของโมเดลก่อนการ
นำไปใช้งานจริงในระบบสายพานลำเลียงที่เชื่อมต่อกับฮาร์ดแวร์ควบคุมการคัดแยกชิ้นงาน 

 
4.3  ผลการทดสอบระบบจริงแบบ Real-time 

หลังจากได้พัฒนาและฝึกโมเดล YOLOv8 จนได้ค่าประสิทธิภาพที่เหมาะสมแล้ว ผู้วิจัยได้นำ
โมเดลที่ได้จากไฟล์ best.pt มาทดสอบในระบบจริง เพ่ือประเมินความสามารถในการตรวจจับตำหนิของ
ขวดในสภาวะการทำงานจริงของสายพานลำเลียง โดยการทดสอบนี้มีวัตถุประสงค์หลักเพื่อวิเคราะห์
ความเร็วในการประมวลผล (Processing Speed) ความหน่วงของระบบ (Latency) ความต่อเนื่องของ
การทำงาน (Continuity) และความสามารถในการตอบสนองต่อการตรวจจับและคัดแยกขวดที่มีตำหนิ
ในแบบ Real-time การทดสอบถูกดำเนินการในสภาพแวดล้อมจำลองสายพานอุตสาหกรรม โดยใช้  
Webcam ความละเอียด 1080p ติดตั้งเหนือสายพานที่ระดับความสูง 30 เซนติเมตร ซึ่งเป็นตำแหน่ง
ที่สามารถมองเห็นขวดได้เต็มใบโดยไม่เกิดการบิดเบือนของภาพ แหล่งกำเนิดแสงใช้ LED Ring Light 
เพื่อลดผลกระทบจากเงาและแสงสะท้อนจากพื้นผิวของขวดพลาสติก การประมวลผลภาพทั้งหมด
ดำเนินการผ่านโปรแกรมที่เขียนด้วย Python 3.10 โดยใช้ OpenCV สำหรับการรับภาพและการ
ประมวลผลเบื้องต้น และใช้โมเดล YOLOv8 ของ Ultralytics สำหรับการตรวจจับวัตถุ 

ในส่วนของฮาร์ดแวร์สำหรับการทดสอบ ได้ใช้คอมพิวเตอร์ PC ที่ติดตั้ง GPU NVIDIA RTX3060 
(12GB VRAM) และ หน่วยความจำ RAM ขนาด 32GB เป ็นเคร ื ่องหลักสำหร ับการทดสอบเชิง
ประสิทธิภาพ รวมถึงมีการเปรียบเทียบผลกับอุปกรณ์ Jetson Nano (4GB) ซึ่งเป็น Embedded Edge 
Device ที่มีความสามารถในการประมวลผลแบบขอบ (Edge Computing) เพื่อประเมินความเหมาะสม
ในการนำไปใช้งานในสายพานขนาดเล็กหรือในระบบอัตโนมัติที่มีข้อจำกัดด้านพลังงานและพ้ืนที่ติดตั้ง 

ผลการทดสอบแสดงดังใน ตารางที่ 4-1 ซึ่งสรุปค่าความเร็วเฉลี่ยของการประมวลผล (Frames 
per Second: FPS) และค่าเวลาเฉลี่ยต่อการประมวลผลภาพหนึ่งเฟรม (Latency per Frame) 

 
 
 
 
 
 



 

 

 

37 

 

 

ตารางท่ี 4-1 ผลการทดสอบความเร็ว (FPS) และ Latency ของระบบ 

อุปกรณ์ที่ใช้ ความเร็วเฉลี่ย  
(FPS) 

Latency ต่อภาพ 
(ms/frame) 

สถานะระบบ 

PC (RTX3060) 38 FPS ~40 ms Real-time สมบูรณ์ 
Jetson Nano 18 FPS ~85 ms Real-time ปานกลาง 

 
จากผลการทดสอบจะเห็นได้ว ่า การใช้คอมพิวเตอร์ PC ที ่มี GPU ระดับกลางสามารถ

ประมวลผลได้ด้วยความเร็วเฉลี่ย 38 เฟรมต่อวินาที (FPS) ซึ่งเพียงพอต่อการตรวจจับขวด defect ที่
เคลื่อนที่บนสายพานลำเลียงที่มีความเร็วสูงสุด 1.5 เมตรต่อวินาที ได้อย่างต่อเนื่อง และสามารถส่ง
สัญญาณ Reject ไปยัง Arduino เพื่อควบคุมกลไก Pneumatic ได้โดยไม่เกิดการหน่วง การทำงาน
ของระบบในระดับนี ้ถ ือว ่าอยู ่ในเกณฑ์  Real-time สมบูรณ์ (Fully Real-time) เนื ่องจากค่า
ความหน่วง (Latency) เฉลี ่ยเพียง 40 มิลลิว ินาทีต่อภาพ ซึ ่งต่ำกว่าเกณฑ์มาตรฐานของการ
ประมวลผลภาพในระบบอุตสาหกรรมที่มักอยู่ระหว่าง 50 – 100 มิลลิวินาที 

ในขณะที่การทดสอบบนอุปกรณ์ Jetson Nano ซึ ่งมีสเปกที่ต่ำกว่า พบว่าระบบสามารถ
ประมวลผลได้ที่ความเร็วเฉลี่ย 18 เฟรมต่อวินาที โดยมีค่าความหน่วงเฉลี่ย 85 มิลลิวินาทีต่อภาพ ซึ่ง
แม้จะช้ากว่า PC ประมาณสองเท่า แต่ยังคงสามารถทำงานได้ในลักษณะ Real-time สำหรับสายพาน
ที่มีความเร็วต่ำกว่า 1.0 เมตรต่อวินาที ผลลัพธ์นี้ชี้ให้เห็นว่าการประยุกต์ใช้ Jetson Nano เหมาะ
สำหรับระบบที่มีพื้นที่จำกัดหรือต้องการประหยัดพลังงาน เช่น สายการผลิตขนาดย่อมหรือระบบ
ตรวจสอบเฉพาะจุด 

การประเมินเพ่ิมเติมในเชิงคุณภาพยังพบว่า ภาพที่ได้จาก Webcam มีความคมชัดเพียงพอต่อ
การตรวจจับ Defect ทุกรูปแบบ โมเดลสามารถวิเคราะห์ได้ภายในเวลาอันสั้นโดยไม่สูญเสียเฟรม
ระหว่างการประมวลผล การทดลองซ้ำ 10 รอบแสดงให้เห็นว่าระบบสามารถรักษาค่าความเร็วเฉลี่ย
ของ FPS ให้คงที่ ±2 FPS และไม่เกิดอาการค้างหรือสูญเสียการเชื่อมต่อกับกล้องตลอดการทำงาน
ต่อเนื่องเป็นเวลา 2 ชั่วโมง ซึ่งแสดงถึงความเสถียรของระบบโดยรวม 

เมื่อวิเคราะห์ในเชิงลึก ค่าความเร็วการประมวลผลที่ได้สะท้อนถึงประสิทธิภาพของการผสาน
ระหว่างโมเดล YOLOv8 กับสถาปัตยกรรมการประมวลผลของ GPU ที่สามารถทำงานแบบขนาน 
(Parallel Processing) ได้อย่างมีประสิทธิภาพ โดยเฉพาะการใช้ Batch Size 32 ซึ ่งเป็นค่าที่
เหมาะสมกับหน่วยความจำ GPU 12GB ของ RTX3060 ทำให้การประมวลผลภาพในแต่ละรอบมี
ความรวดเร็วและลดเวลารอคิวของเฟรมถัดไป นอกจากนี้ การเลือกใช้ความละเอียดของภาพขนาด 
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640×640 พิกเซลก็เป็นอีกปัจจัยหนึ่งที่ช่วยลดภาระการคำนวณของโมเดลโดยไม่ลดคุณภาพของผล
การตรวจจับ 

ในส่วนของการประเมินด้านระบบควบคุม พบว่าเมื่อโมเดลตรวจจับตำหนิได้ ระบบ Python 
จะส่งสัญญาณผ่าน Serial Communication ไปยัง Arduino เพื่อสั่งงาน Solenoid Valve ให้ทำ
การผลักขวด Defect ออกจากสายพาน การตอบสนองของระบบควบคุมวัดได้เฉลี่ย 0.1 วินาที (100 
ms) หลังจากโมเดลตรวจจับได้ ซึ่งถือเป็นเวลาที่เหมาะสมต่อการทำงานในสายพานจริง โดยไม่มีกรณี
ขวด Defect หลุดผ่านการคัดแยก 

โดยสรุป การทดสอบระบบจริงแสดงให้เห็นว่าโมเดล YOLOv8 ที่ได้รับการพัฒนาสามารถ
ทำงานร่วมกับฮาร์ดแวร์และอุปกรณ์ควบคุมได้อย่างมีประสิทธิภาพสูง ทั้งในด้านความเร็ว ความ
แม่นยำ และความเสถียร การที่ระบบสามารถรักษาอัตราเฟรม (FPS) ในระดับสูงได้อย่างต่อเนื่อง
ภายใต้สภาวะการทำงานจริง เป็นหลักฐานยืนยันถึงความพร้อมของระบบสำหรับการนำไปใช้งานจริง
ในสายการผลิตอัตโนมัติ 

 
4.4  ผลการทดสอบระบบภายใต้เงื่อนไขต่าง ๆ 

เพื่อให้การประเมินประสิทธิภาพของระบบมีความครอบคลุมมากที่สุด ผู้วิจัยได้ออกแบบการ
ทดสอบระบบตรวจจับชิ้นงานเสียบนสายพานลำเลียงภายใต้สภาวะแวดล้อมที่แตกต่างกัน โดยมุ่งเน้น
การทดสอบความสามารถของโมเดล YOLOv8 ในการทำงานจริงภายใต้ปัจจัยที่อาจเกิดขึ้นในโรงงาน
อุตสาหกรรม ได้แก่ ความแตกต่างของสภาพแสง ความเร็วของสายพาน และความสั่นสะเทือนของ
ระบบ เพื่อประเมินความเสถียร ความยืดหยุ่น และความทนทานของโมเดลในสถานการณ์ที่ไม่เป็น
อุดมคติ 

ในขั้นตอนการทดสอบ ได้จำลองสภาวะแสงและความเร็วของสายพานในระดับต่าง ๆ โดยใช้ 
Webcam ความละเอียด 1080p ติดตั้งเหนือสายพานลำเลียงที่มีความยาว 1.2 เมตร ความกว้าง 10 
เซนติเมตร และสามารถปรับความเร็วได้ตั้งแต่ 0.5 ถึง 1.5 เมตรต่อวินาที การให้แสงสว่างใช้ LED 
Ring Light ที่สามารถปรับความเข้มแสงได้ตั้งแต่ร้อยละ 30 – 100 เพื่อจำลองสภาพแสงปกติ แสง
น้อย และแสงจ้า โดยการทดสอบแต่ละเงื่อนไขใช้จำนวนขวดทดลองเท่ากันทั้งหมด 1,000 ขวด และ
เก็บผลการตรวจจับของระบบในแต่ละรอบเพื่อนำมาคำนวณค่าความแม่นยำ (Accuracy) ค่าความ
แม่นยำจำเพาะ (Precision) และค่าความครอบคลุม (Recall) 

จากตารางที ่ 4-2 จะเห็นได้ว่า ระบบสามารถทำงานได้อย่างมีประสิทธิภาพในทุกสภาวะ 
โดยเฉพาะในสภาวะแสงปกติซึ ่งเป็นค่ามาตรฐานของการผลิตจริง โมเดลสามารถรักษาค่าความ
แม่นยำได้สูงถึงร้อยละ 97 ขณะที่ในสภาวะแสงน้อย ความแม่นยำลดลงเพียงเล็กน้อยเป็นร้อยละ 94 
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เนื่องจากความเข้มของแสงที่ลดลงส่งผลต่อความคมชัดของภาพบางส่วน อย่างไรก็ตาม การใช้ไฟ LED 
Ring Light เสริมได้ช่วยลดผลกระทบดังกล่าวอย่างมีนัยสำคัญ 
 
ตารางท่ี 4-2 ผลการทดสอบ Accuracy ของระบบภายใต้เงื่อนไขต่าง ๆ 

เงื่อนไขทดสอบ Accuracy Precision Recall หมายเหตุ 

แสงปกติ (Normal Light) 97% 96.5% 96.4% 
ค่ามาตรฐานที่ใช้

เปรียบเทียบ 

แสงน้อย (Low Light) 94% 93.8% 93.1% 
ใช้ LED เสริมช่วยให้

แม่นยำขึ้น 

แสงจ้า/สะท้อน (Bright Light) 92% 91.5% 90.8% 
พบปัญหาการสะท้อนทำ

ให้ตรวจจับยาก 

ความเร็วสายพาน 1.0 m/s 95% 94.7% 94.2% 
ความเร็วปกติของ

สายพาน 

ความเร็วสายพาน 1.5 m/s 90% 89.5% 88.9% 
เริ่มมีการพลาด defect 

บางส่วน 
 

สำหรับสภาวะแสงจ้า (Bright Light) ซึ่งจำลองจากการเปิดไฟแรงเกินปกติจนเกิดแสงสะท้อน
บนพื้นผิวขวด พบว่าความแม่นยำลดลงเหลือ ร้อยละ 92 โดยโมเดลมีแนวโน้มจำแนกผิดในกรณีที่
ฉลากมีลักษณะสะท้อนแสงแรง ทำให้กรอบ Bounding Box ที่ตรวจจับได้เบี้ยวหรือมีขนาดเล็กกว่า
ความเป็นจริง ปัญหานี้สะท้อนให้เห็นถึงความสำคัญของการควบคุมสภาพแสงในสายการผลิตจริง ซึ่ง
ควรติดตั้งแหล่งกำเนิดแสงในมุมท่ีเหมาะสมเพื่อลดการสะท้อนโดยตรงต่อเลนส์กล้อง 

เมื่อพิจารณาผลการทดสอบตามความเร็วของสายพาน พบว่าที่ความเร็ว 1.0 เมตรต่อวินาที ซึ่ง
เป็นค่าความเร็วปกติของสายการผลิตขนาดกลาง ระบบสามารถตรวจจับได้อย่างแม่นยำที่ ร้อยละ 95 
โดยไม่พบปัญหาเฟรมตกหรือหน่วงการทำงาน แต่เมื่อเพิ่มความเร็วเป็น  1.5 เมตรต่อวินาที ความ
แม่นยำลดลงเหลือ ร้อยละ 90 เนื่องจากเวลาที่วัตถุผ่านหน้ากล้องลดลง ทำให้บางภาพเกิดการเบลอ 
(Motion Blur) ซึ่งส่งผลให้ Bounding Box ของโมเดลมีความคลาดเคลื่อนมากขึ้น ทั้งนี้ การใช้กล้อง
ที่มี Shutter Speed สูงหรือการปรับแสงให้เหมาะสมจะสามารถช่วยลดปัญหานี้ได้ 

ผลการทดสอบยังพบว่าระบบมีความทนทานต่อการสั่นสะเทือนของสายพานในระดับหนึ่ง โดย
ในระหว่างการทำงานต่อเนื่องเป็นเวลานาน 3 ชั่วโมง ระบบไม่เกิดการสูญเสียเฟรมหรือการหยุด
ทำงาน และยังสามารถรักษาอัตรา FPS ให้อยู่ในระดับเฉลี่ย 36–38 เฟรมต่อวินาทีได้อย่างคงที่ 
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นอกจากนี้ เมื่อทำการทดสอบซ้ำภายใต้สภาวะเดียวกัน 5 รอบ พบว่าค่าความแม่นยำเฉลี่ยแตกต่าง
กันไม่เกิน ร้อยละ±1.2 แสดงให้เห็นถึงความเสถียรของระบบทั้งในเชิงฮาร์ดแวร์และซอฟต์แวร์ 

ผลการทดลองทั้งหมดชี้ให้เห็นว่า ระบบตรวจจับชิ้นงานเสียที่พัฒนาขึ้นมีความสามารถในการ
ปรับตัวได้ดีต่อสภาวะการทำงานที่เปลี่ยนแปลง การที่ความแม่นยำยังคงอยู่ในระดับสูงแม้ในสภาวะ
แสงจ้าและความเร็วสายพานที่สูงกว่าปกติ แสดงถึงศักยภาพของโมเดล YOLOv8 ในการนำไป
ประยุกต์ใช้ในสถานการณ์จริงของโรงงานผลิตเครื ่องดื ่มหรือบรรจุภ ัณฑ์พลาสติกได้อย่างมี
ประสิทธิภาพ 

กล่าวโดยสรุป ระบบตรวจจับชิ้นงานเสียบนสายพานลำเลียงด้วยโมเดล YOLOv8 ที่ผู ้วิจัย
พัฒนาขึ้นสามารถทำงานได้อย่างมีเสถียรภาพในทุกสภาวะที่ทดสอบ โดยความแม่นยำของระบบอยู่
ในช่วงร้อยละ 90 – 97 ซึ่งถือว่าอยู่ในระดับดีมากเมื่อเทียบกับระบบตรวจสอบอัตโนมัติทั ่วไปใน
อุตสาหกรรม ทั้งยังมีต้นทุนต่ำกว่าและมีความยืดหยุ่นในการปรับใช้งานกับสายการผลิตรูปแบบต่าง ๆ 
ได้โดยง่าย 

 
4.5  การประเมินความพึงพอใจของผู้ใช้งาน 

การประเมินความพึงพอใจของผู้ใช้งานเป็นอีกหนึ่งขั ้นตอนสำคัญในงานวิจัยนี้ เนื่องจากมี
วัตถุประสงค์เพื่อวัดระดับการยอมรับของระบบตรวจจับชิ้นงานเสียบนสายพานลำเลียงโดยใช้โมเดล 
YOLOv8 จากมุมมองของผู้ปฏิบัติงานจริงในโรงงานอุตสาหกรรม ซึ่งครอบคลุมทั้งด้านประสิทธิภาพ 
ความสะดวกในการใช้งาน เสถียรภาพของระบบ และความคุ้มค่าต่อการลงทุน เพื่อใช้เป็นข้อมูล
ประกอบการพัฒนาและปรับปรุงระบบในอนาคตให้เหมาะสมกับสภาพแวดล้อมการผลิตจริงมากที่สุด 

กลุ่มตัวอย่างที่ใช้ในการประเมินประกอบด้วยบุคลากรในสายการผลิตทั้งหมด 18 คน โดย
แบ่งเป็นพนักงานตรวจสอบคุณภาพ (QC Staff) จำนวน 10 คน วิศวกรควบคุมระบบอัตโนมัติ 5 คน 
และผู ้จ ัดการฝ่ายผลิต 3 คน การเก ็บข้อมูลดำเนินการโดยใช้แบบสอบถามความพึงพอใจ 
(Satisfaction Questionnaire) ที่ออกแบบในรูปแบบของมาตราส่วนประมาณค่า 5 ระดับ (Likert 
Scale) โดยมีค่าตั้งแต่ 1 หมายถึง “น้อยที่สุด” จนถึง 5 หมายถึง “มากที่สุด” แบบสอบถามแบ่ง
ออกเป็น 4 ด้านหลัก ได้แก่ ด้านประสิทธิภาพการทำงาน ด้านความสะดวกในการใช้งาน ด้านความ
น่าเชื่อถือและเสถียรภาพของระบบ และด้านความคุ้มค่าในเชิงเศรษฐศาสตร์ 

จากผลการวิเคราะห์ตารางที่ 4-3 พบว่าค่าเฉลี่ยความพึงพอใจรวมเท่ากับ 4.59 จากคะแนน
เต็ม 5.00 โดยมีค่าเบี่ยงเบนมาตรฐาน (Standard deviation, SD) เท่ากับ 0.44 ซึ่งแสดงให้เห็นว่า
ความคิดเห็นของผู้ใช้งานมีความสอดคล้องกันในระดับสูง และไม่มีการกระจายของข้อมูลมากนัก การ
แปลผลในภาพรวมจัดอยู่ในระดับ “สูงมาก” ซึ่งสะท้อนให้เห็นว่าผู้ใช้งานส่วนใหญ่มีความพึงพอใจใน
ระบบตรวจจับชิ้นงานเสียที่พัฒนาขึ้นเป็นอย่างยิ่ง 
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ตารางท่ี 4-3 ผลการประเมินความพึงพอใจของผู้ใช้งาน 

ด้านที่ประเมิน 
ค่าเฉลี่ย  
(Mean) 

ส่วนเบี่ยงเบน
มาตรฐาน (SD) 

ระดับการประเมิน 

ประสิทธิภาพการทำงาน 4.62 0.41 สูงมาก 
ความสะดวกในการใช้งาน 4.48 0.50 สูง 

ความน่าเชื่อถือและเสถียรภาพ 4.55 0.46 สูงมาก 

ความคุ้มค่า 4.70 0.39 สูงมาก 
รวมเฉลี่ย 4.59 0.44 สูงมาก 

 
เมื่อพิจารณารายด้านพบว่า ด้านที่ได้รับคะแนนเฉลี่ยสูงที่สุดคือ ด้านความคุ้มค่า ที่ได้คะแนน 

4.70 ซึ่งสะท้อนว่าผู้ใช้งานมองว่าระบบที่พัฒนาขึ้นมีความคุ้มค่าต่อการลงทุน เนื่องจากใช้ต้นทุนต่ำ
กว่าเครื่องตรวจสอบคุณภาพเชิงพาณิชย์หลายเท่าตัว แต่สามารถให้ผลลัพธ์ที่มีประสิทธิภาพใกล้เคียง
กัน อีกทั้งยังมีความยืดหยุ่นในการปรับปรุงหรืออัปเดตโมเดลได้ในอนาคตโดยไม่ต้องเปลี่ยนอุปกรณ์
ทั้งหมด 

ด้านที่ได้รับคะแนนสูงรองลงมาคือ ประสิทธิภาพการทำงาน ซึ่งได้คะแนน 4.62 ซึ่งสะท้อนว่า
โมเดล YOLOv8 มีความสามารถในการตรวจจับตำหนิได้อย่างแม่นยำและรวดเร็ว ระบบสามารถ
ทำงานได้แบบ Real-time โดยไม่เกิดความหน่วงในการตรวจจับหรือการส่งสัญญาณไปยังอุปกรณ์ 
Rejector พนักงานตรวจสอบคุณภาพจึงรู้สึกว่าระบบช่วยลดภาระงานในการตรวจสอบด้วยสายตา
และเพ่ิมความสม่ำเสมอในการตรวจจับได้เป็นอย่างดี 

ด้านความน่าเชื่อถือและเสถียรภาพของระบบได้รับคะแนน 4.55 ซึ่งเป็นคะแนนในระดับสูงมาก
เช่นกัน ผู้ใช้งานส่วนใหญ่ให้ความเห็นว่าสามารถใช้ระบบได้ต่อเนื่องเป็นเวลานานโดยไม่เกิดการค้าง
หรือการประมวลผลผิดพลาด การตอบสนองของระบบในการตรวจจับและคัดแยกขวด defect มี
ความต่อเนื่องแม้ทำงานต่อเนื่องหลายชั่วโมง ซึ่งเป็นปัจจัยสำคัญในระบบสายพานอัตโนมัติที่ต้อง
ทำงานตลอด 24 ชั่วโมง 

ส่วนด้านความสะดวกในการใช้งานได้รับคะแนน 4.48 อยู่ในระดับ “สูง” โดยแม้คะแนนจะต่ำ
กว่าด้านอื่นเล็กน้อย แต่ผู้ใช้งานส่วนใหญ่ให้ความเห็นว่ายังสามารถใช้งานได้ง่ายผ่านอินเทอร์เฟซที่
ออกแบบในลักษณะส่วนต่อประสานกราฟิกกับผู้ใช้ (Graphical User Interface, GUI) ที่แสดงผล
ภาพแบบ Real-time มีสีกรอบ Bounding Box แยกประเภท Defect อย่างชัดเจน เช่น สีแดง
สำหรับขวด Defect และสีเขียวสำหรับขวดปกติ รวมถึงมีหน้าต่างบันทึกผล (Log Window) ที่ช่วยให้
ผู้ใช้งานสามารถตรวจสอบประวัติการตรวจจับได้ในภายหลัง 



 

 

 

42 

 

 

นอกจากนี้ ยังพบว่าผู้ใช้งานหลายคนให้ความคิดเห็นเพิ่มเติมว่า ระบบควรมีฟังก์ชันบันทึก
ข้อมูล Defect ในรูปแบบรายงานอัตโนมัติ เช่น การส่งออกเป็นไฟล์ CSV หรือ Excel เพื่อให้ฝ่าย
ควบคุมคุณภาพสามารถวิเคราะห์แนวโน้มของปัญหาในระยะยาวได้สะดวกยิ ่งขึ ้น ข้อเสนอแนะ
ดังกล่าวสะท้อนถึงความสนใจของผู้ใช้งานในการนำระบบไปใช้ต่อยอดเชิงอุตสาหกรรมจริง ซึ่งเป็น
ประโยชน์ต่อการพัฒนาระบบเวอร์ชันถัดไปให้สมบูรณ์ยิ่งข้ึน 

ผลการประเมินโดยรวมชี้ให้เห็นว่าระบบตรวจจับชิ้นงานเสียบนสายพานลำเลียงด้วยเทคโนโลยี
การเรียนรู้ของเครื่องที่พัฒนาขึ้นในงานวิจัยนี้มีความเหมาะสมต่อการใช้งานจริงในสภาพแวดล้อมของ
โรงงานอุตสาหกรรม ผู้ใช้งานมีความเชื่อมั่นในประสิทธิภาพของโมเดล YOLOv8 ทั้งในด้านความ
แม่นยำ ความเร็ว และความคงที่ของระบบ ตลอดจนเห็นว่าระบบสามารถช่วยลดภาระงานของมนุษย์ 
เพ่ิมความสม่ำเสมอในการตรวจสอบ และลดอัตราความผิดพลาดที่เกิดจากความล้าในการทำงานของ
พนักงานได้อย่างมีนัยสำคัญ 

ดังนั้นสามารถสรุปได้ว่าระบบที่พัฒนาขึ้นได้รับการตอบรับในเชิงบวกจากผู้ใช้งานจริง และมี
ศักยภาพเพียงพอที่จะนำไปขยายผลใช้งานในระดับสายการผลิตอุตสาหกรรมจริงได้ โดยเฉพาะใน
โรงงานขนาดกลางและขนาดเล็กที่ต้องการระบบตรวจสอบคุณภาพที่มีประสิทธิภาพสูงแต่มีต้นทุนต่ำ 
ระบบนี้จึงเป็นตัวอย่างที่ดีของการนำเทคโนโลยีปัญญาประดิษฐ์มาผสมผสานกับการควบคุมอัตโนมัติ 
เพ่ือยกระดับคุณภาพการผลิตในยุคอุตสาหกรรม 4.0 

 
4.6  การเปรียบเทียบกับงานวิจัยก่อนหน้า 

เพื่อตรวจสอบและยืนยันประสิทธิภาพของระบบที่พัฒนาขึ้นในงานวิจัยนี้ ผู ้วิจัยได้ทำการ
เปรียบเทียบผลลัพธ์กับงานวิจัยก่อนหน้า ทั้งในประเทศและต่างประเทศที่ใช้เทคนิคการเรียนรู้เชงิลึก 
(Deep Learning) สำหรับการตรวจจับวัตถุ (Object Detection) หรือการตรวจสอบคุณภาพ
ผลิตภัณฑ์ในกระบวนการอุตสาหกรรม 

จากการศึกษาพบว่า งานของ Ren et al. [74] ซึ่งใช้โมเดล YOLOv4 สำหรับการตรวจสอบ
วัตถุในสายการผลิตเครื่องดื่ม สามารถทำได้ที่ความแม่นยำเฉลี่ยประมาณ ร้อยละ 93 และสามารถ
ทำงานได้ในระดับกึ่ง Real-time แต่ยังมีข้อจำกัดในด้านความเร็วของการประมวลผลและการจัดการ
กับภาพที ่ม ีความซับซ้อนสูง การใช้ YOLOv4 จำเป็นต้องอาศัย GPU ระดับสูงและการปรับ
พารามิเตอร์ด้วยมือหลายขั้นตอน ส่งผลให้การใช้งานในภาคอุตสาหกรรมทั่วไปยังมีความซับซ้อน 

งานของ Zhang et al. [68] ได้ทำการพัฒนาโมเดล YOLOv5 เพื่อใช้ตรวจสอบความเสียหาย
ของฝาขวดพลาสติกในสายการบรรจุอัตโนมัติ โดยได้ผลลัพธ์ความแม่นยำเฉลี่ยอยู่ที่ ร้อยละ 94 และมี
ความเร็วการประมวลผลเฉลี่ย 25 เฟรมต่อวินาที อย่างไรก็ตาม งานวิจัยดังกล่าวใช้กล้องอุตสาหกรรม
ความละเอียดสูง (Industrial Camera) ที่มีราคาสูงกว่า 60,000 บาทต่อชุด และต้องใช้อุปกรณ์
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ประมวลผลเฉพาะทาง (GPU RTX3090) เพ่ือให้ได้ประสิทธิภาพสูงสุด ซึ่งทำให้ต้นทุนรวมของระบบมี
มูลค่าสูงเกินกว่าที่โรงงานขนาดกลางและขนาดเล็กจะลงทุนได้ 

ในขณะเดียวกัน Mittal et al. [76] ได้เสนอแนวทางการใช้โครงข่ายประสาทเทียมแบบดั้งเดิม 
(Convolutional Neural Network: CNN) เพื่อจำแนกประเภทของตำหนิในวัสดุอุตสาหกรรม ซึ่งให้
ค่าความแม่นยำเฉลี่ยอยู่ที่ ร้อยละ 90 โดยแม้ผลลัพธ์จะอยู่ในเกณฑ์ดี แต่มีข้อจำกัดด้านความเร็วของ
การประมวลผลและไม่สามารถใช้งานแบบ Real-time ได้ เนื่องจากต้องทำการประมวลผลภาพแต่ละ
เฟรมแบบลำดับ ส่งผลให้ระบบไม่เหมาะกับการใช้งานในสายพานอุตสาหกรรมที่ต้องการความ
ต่อเนื่องสูง 

เมื่อเปรียบเทียบกับงานวิจัยทั้งหมดข้างต้น จะเห็นได้ว่างานวิจัยในครั้งนี้ซึ่งใช้โมเดล  YOLOv8 
แสดงให้เห็นถึงความก้าวหน้าในหลายด้าน โดยเฉพาะในด้าน ความแม่นยำ (Accuracy) ที่ทำได้เฉลี่ย
สูงถึงร้อยละ 96 – 97 ซึ่งสูงกว่าทุกงานที่กล่าวมา รวมถึงสามารถทำงานได้ในลักษณะ  Real-Time 
เต็มรูปแบบ (30 – 38 FPS) และยังมีจุดเด่นสำคัญคือ การเชื่อมโยงกับอุปกรณ์ฮาร์ดแวร์จริง ได้แก่ 
Arduino และระบบ Pneumatic Rejector ที่สามารถคัดแยกขวด Defect ออกจากสายพานได้โดย
อัตโนมัติ ซึ่งเป็นสิ่งที่งานวิจัยก่อนหน้านี้ยังไม่สามารถดำเนินการได้อย่างครบวงจร 

ในด้านต้นทุน งานวิจัยนี้ใช้เพียง Webcam ราคาประมาณ 500 บาท และ ไมโครคอนโทรลเลอร์ 
Arduino Uno ราคาไม่เกิน 1,000 บาท รวมถึงคอมพิวเตอร์ประมวลผล PC ที่มี GPU ระดับกลาง 
ส่งผลให้ต้นทุนรวมของระบบทั้งสิ้นอยู่ที่ประมาณ 1500 บาท ซึ่งถือว่าต่ำกว่าระบบ Vision Sensor 
เชิงพาณิชย์ทั ่วไปมากกว่า 7–10 เท่า แต่สามารถให้ผลลัพธ์ใกล้เคียงหรือดีกว่าในหลายกรณี 
โดยเฉพาะด้านความยืดหยุ่นในการอัปเดตโมเดลและปรับปรุงซอฟต์แวร์ให้เหมาะสมกับผลิตภัณฑ์
ชนิดต่าง ๆ 

ดังนั้นจึงสามารถสรุปได้ว่า งานวิจัยนี้ได้แสดงให้เห็นถึงการพัฒนาเทคโนโลยีตรวจจับตำหนิบน
สายพานลำเลียงที่มีทั้งความแม่นยำสูง ต้นทุนต่ำ และสามารถประยุกต์ใช้ในสภาวะแวดล้อมจริงได้
อย่างมีประสิทธิภาพ ซึ่งถือเป็นจุดเด่นที่โดดเด่นเหนือกว่างานวิจัยก่อนหน้า และเป็นแนวทางที่
สามารถต่อยอดไปสู่การพัฒนาระบบอัตโนมัติในโรงงานอุตสาหกรรมยุคใหม่ได้อย่างแท้จริง 

 
4.7  บทสรุปผลการดำเนินงาน 

จากการดำเนินการทดลองทั้งหมดในงานวิจัยนี้ สามารถสรุปผลการพัฒนาและทดสอบระบบ
ตรวจจับชิ้นงานเสียบนสายพานลำเลียงโดยใช้เทคโนโลยีการเรียนรู้ของเครื่อง (Machine Learning) 
และโมเดล YOLOv8 ได้ดังนี ้

โมเดล YOLOv8 ที่พัฒนาและฝึกด้วยข้อมูลจำนวนกว่า 25,000 ภาพ (หลังจากการทำ Data 
Augmentation) สามารถเรียนรู้ลักษณะของตำหนิบนขวดได้อย่างมีประสิทธิภาพสูง การประเมินผล
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ในชุดข้อมูลทดสอบจำนวน 2,500 ภาพพบว่าโมเดลสามารถตรวจจับตำหนิได้อย่างแม่นยำสูงกว่า 
ร้อยละ 95 ในทุกประเภทของ defect โดยเฉพาะคลาส “ไม่มีฝา” และ “ปกติ” ที่มีความถูกต้อง
มากกว่าร้อยละ 98 – 99 

ระบบสามารถทำงานในลักษณะ Real-time ได้อย่างราบรื่น โดยมีความเร็วในการประมวลผล
เฉลี่ย 30 – 38 เฟรมต่อวินาที (FPS) บนคอมพิวเตอร์ที่มี GPU ระดับกลาง และมี Latency ต่อเฟรม
ไม่เกิน 40 มิลลิวินาที ซึ่งเพียงพอสำหรับการตรวจสอบขวดที่เคลื่อนที่บนสายพานที่ความเร็วสูงถึง  
1.5 เมตรต่อวินาที นอกจากนี้ การทดสอบบนอุปกรณ์ขนาดเล็กอย่าง Jetson Nano ก็ยังสามารถ
ทำงานได้ที่ความเร็ว 18 FPS ซึ่งเหมาะสมกับสายพานที่มีความเร็วต่ำ 

ในส่วนของความพึงพอใจของผู้ใช้งานจริง จำนวน 18 คน ซึ่งประกอบด้วยพนักงานตรวจสอบ
คุณภาพ วิศวกร และผู้จัดการ พบว่าผู้ใช้งานมีความพึงพอใจในระดับสูงมาก โดยมีค่าเฉลี่ยรวมเท่ากับ 
4.59 จากคะแนนเต็ม 5.00 โดยเฉพาะด้านความคุ้มค่าและประสิทธิภาพการทำงานที่ได้รับคะแนน
เฉลี่ยสูงสุดถึง 4.70 และ 4.62 ตามลำดับ แสดงให้เห็นว่าผู้ใช้งานให้การยอมรับและมองว่าระบบ
สามารถใช้งานได้จริงในสายการผลิต 

ในด้านต้นทุน ระบบที่พัฒนาขึ้นใช้วัสดุอุปกรณ์ที่มีราคาย่อมเยา ได้แก่ Webcam, Arduino, 
และชุดขับเคลื ่อน Pneumatic รวมต้นทุนเพียงประมาณ 46,450 บาท ซึ ่งต่ำกว่าระบบ Vision 
Sensor เชิงพาณิชย์ที่มีราคาหลักหลายแสนบาทอย่างมาก แต่ยังคงให้ผลลัพธ์ที่เทียบเท่าหรือดีกว่าใน
ด้านความแม่นยำและความยืดหยุ่นของการใช้งาน 

โดยสรุป การพัฒนาแบบจำลองและระบบตรวจจับชิ้นงานเสียบนสายพานลำเลียงด้วยโมเดล 
YOLOv8 ในงานวิจัยนี้ประสบความสำเร็จทั้งในเชิงเทคนิคและเชิงปฏิบัติ ระบบสามารถตรวจจับ
ตำหนิได้อย่างมีประสิทธิภาพ ทำงานได้แบบ Real-Time มีเสถียรภาพสูง และได้รับการยอมรับจาก
ผู้ใช้งานจริงในภาคอุตสาหกรรม ทั้งนี้ ผลการวิจัยยังแสดงให้เห็นถึงศักยภาพของการนำเทคโนโลยี 
Machine Learning มาประยุกต์ใช้ร่วมกับระบบควบคุมอัตโนมัติในอุตสาหกรรมการผลิตยุคใหม่ ซึ่ง
สอดคล้องกับแนวทางของอุตสาหกรรม 4.0 ที่เน้นการเพิ่มประสิทธิภาพ ความแม่นยำ และการลด
ต้นทุนด้วยเทคโนโลยีอัจฉริยะ 
 



 

 

 

 

 

บทท่ี 5 
สรุป อภิปรายผล และข้อเสนอแนะการวิจัย 

 
บทนี้เป็นการสรุปผลการดำเนินงานวิจัยทั้งหมดตั้งแต่เริ่มต้นจนสิ้นสุดกระบวนการ โดยสรุป

สาระสำคัญของผลการทดลอง การวิเคราะห์เชิงเปรียบเทียบ และการอภิปรายผลที่ได้จากระบบ
ตรวจจับชิ้นงานเสียบนสายพานลำเลียงอัตโนมัติด้วยการเรียนรู้ของเครื่อง รวมถึงการเชื่อมโยง
ผลการวิจัยกับทฤษฎีและงานวิจัยก่อนหน้า เพื่อยืนยันความถูกต้องและประสิทธิภาพของแนวทางที่
นำเสนอ นอกจากนี้ยังได้รวบรวมข้อเสนอแนะเชิงเทคนิคและแนวทางการพัฒนาต่อยอดในอนาคต 
เพ่ือใช้เป็นแนวทางในการประยุกต์ใช้งานจริงในภาคอุตสาหกรรม 

5.1 สรุปผลการวิจัย 
5.2 อภิปรายผลการวิจัย 
5.3 ข้อเสนอแนะจากการวิจัย 

 
5.1  สรุปผลการวิจัย 

งานวิจัยนี้มีวัตถุประสงค์เพ่ือพัฒนาและประเมินประสิทธิภาพของระบบตรวจจับชิ้นงานเสียบน
สายพานลำเลียงโดยใช้เทคนิคการเรียนรู้ของเครื่อง (Machine Learning) ผ่านโมเดล YOLOv8 ซึ่ง
เป็นสถาปัตยกรรมการตรวจจับวัตถุรุ่นใหม่ที่มีความแม่นยำสูงและสามารถทำงานได้แบบ Real-time 
ระบบถูกออกแบบให้มีความสามารถในการตรวจจับตำหนิของขวด เช่น ไม่มีฝา ไม่มีฉลาก ฉลากเอียง
หรือซ้อน ขวดแตกหรือบิดเบี้ยว และสามารถส่งสัญญาณผ่าน Arduino เพ่ือควบคุมกลไกการคัดแยก
ขวด Defect ออกจากสายพานได้โดยอัตโนมัติ 

ข้อมูลที่ใช้ในการฝึกโมเดลประกอบด้วยภาพรวม 25,000 ภาพ ซึ่งได้จากการเก็บข้อมูลจริงจาก
สายพานจำลองและผ่านกระบวนการ Data Augmentation เพื่อเพิ่มความหลากหลายของลักษณะ
ตำหนิ การฝึกโมเดลดำเนินการบนแพลตฟอร์ม Google Colab Pro+ โดยใช้ GPU Tesla T4 และ 
A100 ซึ่งทำให้สามารถประมวลผลได้อย่างรวดเร็ว การฝึกดำเนินการเป็นจำนวน 150 Epoch โดยมี
การใช้ฟังก์ชันการสูญเสีย (Loss Function) แบบผสม ได้แก่ Binary Cross Entropy (BCE) สำหรับ
การจำแนก และ Complete IoU (CIoU) สำหรับการคำนวณตำแหน่งกรอบ Bounding Box 

ผลการฝึกโมเดลพบว่า ค่า Training Loss ลดลงจาก 0.15 เหลือ 0.037 และค่า Validation 
Loss ลดลงจาก 0.17 เหลือ 0.054 ภายใน 150 Epoch แสดงถึงการเรียนรู้ที่ดีโดยไม่เกิด Overfitting 
โมเดลสามารถบรรลุค่าความแม่นยำ (Precision) ร้อยละ 96 และค่าการครอบคลุม (Recall) ร้อยละ



 

 

 

46 

 

 

95 หลัง Epoch ที่ 130 ซึ่งคงที่ในระดับสูงจนสิ้นสุดการฝึก ผลลัพธ์ดังกล่าวยืนยันว่าโมเดลสามารถ
เรียนรู้ลักษณะตำหนิของขวดได้อย่างสมบูรณ์ 

จากการประเมินด้วย Confusion Matrix บนชุดข้อมูลทดสอบ (Test Set) จำนวน 2,500 ภาพ 
พบว่าโมเดลมีอัตราการจำแนกถูกต้องเฉลี่ยสูงถึงร้อยละ 96.4 โดยคลาส “ไม่มีฝา” และ “ปกติ” มีค่า
ความถูกต้องสูงสุดถึงร้อยละ 98 และ ร้อยละ 99 ตามลำดับ ซึ่งยังถือว่าอยู่ในระดับที่น่าพอใจ 

เมื ่อทดสอบระบบจริงในสายพานลำเลียงที ่จำลองสภาวะการทำงานอุตสาหกรรม ระบบ
สามารถทำงานได้แบบ Real-time ด้วยความเร็วเฉลี่ย 38 FPS บน PC (GPU RTX3060) และ 18 
FPS บน Jetson Nano โดยมี Latency ต่ำกว่า 40 มิลลิวินาทีต่อเฟรม ซึ่งเพียงพอต่อการทำงานของ
สายพานที่ความเร็ว 1.5 เมตรต่อวินาที นอกจากนี้ ระบบยังสามารถทำงานต่อเนื่องได้ยาวนานโดยไม่
เกิดความหน่วงหรือการหยุดชะงัก 

ผลการทดสอบในสภาวะแสงและความเร็วสายพานที่แตกต่างกันแสดงให้เห็นว่าระบบมีความ
เสถียรสูง โดยความแม่นยำอยู่ระหว่าง ร้อยละ 90 – 97 ในทุกสภาวะ ซึ่งแสดงให้เห็นถึงความสามารถ
ของโมเดลในการปรับตัวต่อปัจจัยแวดล้อมได้ดี 

การประเมินความพึงพอใจของผู้ใช้งานจริง 18 คน พบว่าผู้ใช้งานให้คะแนนเฉลี่ยความพึงพอใจ
สูงมาก ซึ่งได้คะแนนถึง 4.59 จากคะแนนเต็ม 5.00 โดยเฉพาะด้านความคุ้มค่าที่ได้คะแนน 4.70 และ
ประสิทธิภาพการทำงานที่ได้คะแนน 4.62 ซึ่งสะท้อนถึงการยอมรับและความเหมาะสมของระบบต่อ
การใช้งานจริงในโรงงาน 

สรุปได้ว่า ระบบตรวจจับชิ ้นงานเสียที ่พัฒนาขึ ้นสามารถตอบโจทย์ได้ทั ้งในด้านเทคนิค 
ประสิทธิภาพ การประยุกต์ใช้จริง และความคุ้มค่าทางเศรษฐศาสตร์ โดยใช้ต้นทุนรวมเพียง 46,450 
บาท ซ่ึงต่ำกวา่ระบบ Vision Sensor เชิงพาณิชย์กว่า 7–10 เท่า แต่ให้ผลลัพธ์ที่เทียบเท่ากัน 
 
5.2  อภิปรายผลการวิจัย 

ภาพรวม งานนี้รายงานความแม่นยำเชิงโมเดลอยู่ระดับ Precision ประมาณ รัอยละ 96, 
Recall ประมาณ ร้อยละ 95 mAP@0.5 > ร้อยละ 97 และคงเสถียรหลังการฝึก (loss ไม่แสดง
อาการ overfitting เด่นชัด) ภายใต้สภาพแสงและความเร็วสายพานที่หลากหลาย โดยระบบทั้งชุด
ทำงานได้ 25–30 FPS ร่วมกับการคัดท้ิงแบบนิวเมติกผ่าน Arduino ที่หน่วง [10, 11], [47] 

เทียบกับงาน CNN ดั้งเดิม งานของ Mittal et al. [79] ประยุกต์ CNN แบบดั้งเดิมกับพ้ืนผิว
โลหะเรียบ ได้ความแม่นยำราว ร้อยละ 90–92 ในสภาพควบคุม แต่ไวต่อแสงเงา/ฝุ่นเมื่อย้ายสู่หน้า
งานจริง (performance ลดร้อยละ 7–10) งานนี้ใช้ YOLOv8 (one-stage detector) ซึ ่งเรียนรู้
คุณลักษณะหลายสเกลและมี threshold ปรับได้ ทำให้ทนต่อความแปรปรวนของแสง/ฉลากมันเงา
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ได้ดีกว่า ในขณะที่ยังรักษา FPS สูงกว่าแนวทาง CNN แบบสองขั้นตอนหรือเชิงกฎ (rule-based) 
[49] 

เทียบกับสาย YOLO ที่เน้น Real-time Ren et al. [74] ใช้ YOLOv4 กับสายพานอาหาร 
Precision/Recall ร้อยละ 92 ภายใต้แสงคงที่ งานนี้ได้ความแม่นยำเฉลี่ยสูงกว่า (ร้อยละ 95) และ
ยังคงเฟรมเรตในช่วง 25–30 FPS บนพีซี/เอดจ์ทั่วไป โดยไม่ต้องพ่ึงกล้องอุตสาหกรรมราคาแพง [36],  
[49] ส ่ วน Deepak et al. [77] ใช ้  YOLOv8, YOLOv9 และ YOLOv11 ก ับช ิ ้ น งานเช ่ นขวด
เช่นเดียวกับงานวิจัยฉบับนี้ ซึ่งจากกงานวิจัยชิ้นนี้พบว่า YOLOv8 ให้ผลลัพลัพธ์ที่ดีที่สุด คือ มีความ
แม่นยำสูงถึงร้อยละ 78 ในทุก ๆ คลาส คือ Cracked_Bottle, Misaligned_Label, Missing_Cap, 
Normal_ Bottle, Overfilled_Bottle, and Underfilled_Bottle ซึ่งสอดคล้องกับงานวิจัยนี้ 

เทียบกับโมเดลเฉพาะโดเมน [62] ปรับ backbone/neck เพื ่อจัดการลักษณะผิวขวด 
รายงาน mAP สูงกว่า YOLOv8 มาตรฐาน ร้อยละ 2–3 แต่แลกกับเวลา/ทรัพยากรฝึก และยังไม่
แสดงผลบนอุปกรณ์ราคาประหยัด งานนี้เลือก “ความสมดุล” ระหว่างความแม่นยำและความคุ้มค่า 
ใช้ YOLOv8 มาตรฐาน ออกแบบแสง/ROI/threshold ให้แม่นและสเถียรบน Webcam PC/Jetson 
ที่ต้นทุนต่ำ และยืนยันด้วยการเชื่อมต่อ I/O จริง (Arduino) ในสายพานจำลอง [11], [47] 

โดยสรุป งานวิจัยนี้โดดเด่นเหนือผลงานก่อนหน้าในสามด้านหลัก คือ ความพร้อมใช้งานจริง
สถาปัตยกรรมครบวงจรตั้งแต่รับภาพ ประมวลผล ตัดสินใจ คัดทิ้ง เชื่อมต่อ Arduino/โซลินอยด์
ทำงาน Real-time 25–30 FPS ด้วยเวลาแฝงปลายทางต่ำ สมรรถนะและเสถียรภาพ YOLOv8 ที่
ปรับจูนบนข้อมูล 25,000 ภาพ ให้ Precision ประมาณร้อยละ 96 Recall ประมาณร้อยละ 95 
mAP@0.5 มากกว่าร้อยละ 97 และคงตัวภายใต้สภาพแสง/ความเร็วสายพานที่หลากหลาย  และ 
ความคุ้มค่า ดูแลง่าย ต้นทุนรวมราว 46,450 บาท ต่ำกว่าโซลูชันเชิงพาณิชย์หลายเท่า พร้อมแนวทาง
บำรุงรักษาและปรับจูน (ROI, Threshold, Augmentation) เพ่ือลดผล Domain Shift ระยะยาว ทั้ง
สามมิตินี้ทำให้งานของมีสมดุล แม่น เร็ว ประหยัด และ พร้อมถ่ายโอนขึ้นสายการผลิตจริง  
 
5.3  ข้อเสนอแนะจากการวิจัย 

จากผลการดำเนินการวิจัยทั้งหมด ผู้วิจัยมีข้อเสนอแนะเพ่ือการพัฒนาในอนาคตดังนี้ 
ในส่วนของการพัฒนาโมเดล ควรเพิ ่มความหลากหลายของข้อมูล (Dataset Diversity) 

โดยเฉพาะภาพในสภาวะแสงธรรมชาติหรือในโรงงานที่มีแสงสะท้อนสูง เพื่อเพิ่มความสามารถของ
โมเดลในการทำงานภายใต้เงื่อนไขที่ไม่แน่นอน อีกทั้งควรขยายประเภทของ Defect ให้ครอบคลุม
มากขึ้น เช่น คราบสกปรกบนฉลาก สีซีด หรือการบิดงอของขวดในแนวอื่น ๆ เพื่อให้ระบบมีความ
สมบูรณ์และใช้งานได้หลากหลาย 
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ในด้านเทคนิค ควรพิจารณาการนำ  Edge AI เช ่น Jetson Xavier หรือ Raspberry Pi 5 
ร่วมกับโมเดลขนาดเล็ก (YOLOv8-n หรือ YOLOv8-s) เพื่อเพิ่มประสิทธิภาพการประมวลผลใน
สถานที่จริงโดยไม่ต้องพ่ึงพาเครื่องคอมพิวเตอร์ที่มี GPU ขนาดใหญ่ ซึ่งจะช่วยลดต้นทุนและเพ่ิมความ
คล่องตัวของระบบ 

ในส่วนของซอฟต์แวร์ ควรพัฒนาอินเทอร์เฟซผู้ใช้ (User Interface) ให้มีความยืดหยุ่นมากขึ้น 
เช่น การเพิ่มเมนูบันทึกข้อมูล Defect อัตโนมัติ การสร้างรายงานสถิติแบบกราฟ และการแจ้งเตือน
อัตโนมัติผ่านเครือข่าย เช่น ระบบ LINE Notify หรือ Dashboard ผ่าน Web Server เพ่ือช่วยให้ฝ่าย
ควบคุมคุณภาพสามารถติดตามผลแบบเรียลไทม์ได้ 

สุดท้าย ในเชิงการประยุกต์ใช้ ควรทดลองนำระบบนี้ไปติดตั้งในสายการผลิตจริงของโรงงาน
อุตสาหกรรมขนาดกลางหรือขนาดใหญ่ เพื ่อประเมินการทำงานในระยะยาว รวมทั้งวิเคราะห์
ผลตอบแทนทางเศรษฐศาสตร์ (Return of Investment) และผลประโยชน์ที่เกิดขึ้นจากการลดของ
เสีย (Waste Reduction) ซึ่งจะช่วยยืนยันคุณค่าของเทคโนโลยีในเชิงพาณิชย์ 

โดยสรุป งานวิจัยนี้เป็นพ้ืนฐานสำคัญสำหรับการพัฒนาระบบตรวจสอบคุณภาพอัตโนมัติในยุค
อุตสาหกรรม 4.0 ที่ใช้เทคโนโลยี Machine Learning เป็นแกนหลักในการยกระดับประสิทธิภาพการ
ผลิต และสามารถต่อยอดไปสู ่การสร้างระบบอัจฉริยะ (Smart Factory) ที ่สามารถตรวจสอบ 
วิเคราะห์ และตัดสินใจได้ด้วยตนเองในอนาค
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หน้าจอระบบตรวจจับชิ้นงานเสียบนสายพานลำเลียงอัตโนมัติด้วยการเรียนรู้ของเครื่อง 
 และการอธิบายคำสั่งต่าง ๆ ในหน้าจอ 

 
หน้าจอโปรแกรมนี้ถูกออกแบบให้ผู้ใช้ตรวจสอบขวดบนสายพานด้วยโมเดล YOLO อย่างเป็น

ขั้นเป็นตอน โดยแกนกลางของระบบคือภาพพรีวิวทางซ้ายซึ่งแสดงเฟรมจากวิดีโอหรือกล้องแบบ
เรียลไทม์ พร้อมซ้อนทับผลตรวจจับและเขตสนใจ (ROI) ทั้งสองโซนคือบริเวณฉลากและบริเวณฝา
ขวด ภาพที่เห็นถูกปรับขนาดเป็นมาตรฐานเพ่ือให้ตำแหน่งพิกเซลสอดคล้องกับการลากแก้ไข ROI ได้ 
เมื่อโมเดลตรวจพบวัตถุจะวาดกรอบสี่ เหลี่ยมและแท็บหมายเลขไอดีการติดตาม (track id) ให้เห็น
ทันที จุดอ้างอิงที่มุมกรอบถูกใช้ตรวจว่ากรอบนั้น “เข้า” ROI หรือไม่เพ่ือการนับจำนวนชิ้นงานดีและ
ชิ้นงานเสีย 

ส่วนตัวเลือกทางขวาคือชุดตัวเลือกของโมเดลและคลาส ผู้ใช้ระบุไฟล์ .pt ของ YOLO และไฟล์
รายชื ่อคลาสได้จากปุ ่มเลือกไฟล์ ค่าความมั ่นใจขั ้นต่ำควบคุมผลของการตรวจ ส่วน “Skip N 
frames” ช่วยลดภาระซีพียูด้วยการเว้นรันโมเดลเป็นช่วง ๆ โดยยังคงแสดงเฟรมต่อเนื่อง ทำให้
ราบรื่นขึ้นเมื่อเครื่องไม่แรงมาก ขยับลงมาจะพบส่วน “Source” สำหรับเลือกแหล่งสัญญาณว่าจะ
เปิดไฟล์วิดีโอหรือใช้เว็บแคมตัวใดผ่านหมายเลขดัชนี(Index) 

การใช้งานจะถูกกำกับด้วยกลุ่ม “Playback” และ “Run” ผู้ใช้ตั้งความเร็วเป็นอัตราส่วน เช่น 
0.25× ถึง 3.0× ถ้าเป็นไฟล์ โปรแกรมจะเร่งด้วยการข้ามเฟรมพร้อมควบคุมเวลาหน่วงต่อเฟรม ส่วน
กล้องจริงเร่งเกินขีดจำกัด FPS ไม่ได้แต่ชะลอได้ เมื่อกด Start เธรดประมวลผลจะเริ่มทำงานและ
สามารถ Pause/Resume/Stop ได้ทันที ปุ่ม Reset Counters ใช้ล้างค่าที่นับทั้งหมดเพื่อเริ ่มนับ
ใหม่ และ Snapshot ใช้จับภาพหน้าจอพรีวิวเป็นไฟล์ PNG เพ่ือบันทึกหลักฐานหรือรายงาน 

หนึ่งในหัวใจของงานตรวจสอบคือ ROI โปรแกรมเปิดให้แก้ไขได้สะดวกผ่าน “ROI Edit” เพียง
ติ๊ก Edit ROI แล้วเลือกเป้าหมายว่าจะแก้โซน Label หรือ Cap จากนั้นลากจุดมุมบนภาพด้วยเมาส์
ได้โดยตรง เมื่อตั้งค่าพลาดก็คืนสภาพด้วย Reset ROI ได้ในคลิกเดียว การที่ ROI ถูกผูกกับพิกเซล
ของภาพแสดงผลโดยตรง ช่วยให้สิ่งที่เห็นกับสิ่งที่ใช้คำนวณเป็นฉบับเดียวกัน ลดความสับสนเรื่อง
สเกลของภาพ 

สำหรับการติดตามผลในเชิงคุณภาพและการเก็บบันทึก โปรแกรมมีระบบ “CSV Logging” ที่
บันทึกสถิติทุกครั้งที่มีการอัปเดตพร้อมพารามิเตอร์สำคัญ เช่น ชื่อโมเดล ค่าความสว่าง/คอนทราสต์ 
สถานะพอร์ตอนุกรม ไฟล์ปลายทางเลือกเองได้หรือให้ระบบตั้งชื่อไฟล์อัตโนมัติในโฟลเดอร์มาตรฐาน
ก็ได้ เมื่อวิดีโอเล่นถึงท้ายไฟล์ ผู้ใช้ยังเลือกพฤติกรรมได้ว่าจะวนกลับต้นไฟล์อัตโนมัติหรือหยุดและรอ
คำสั่งเล่นใหม่ผ่านตัวเลือก “Loop when finished” ซึ่งช่วยให้หน้าจอไม่ว่างเปล่าและการทำงาน
ต่อเนื่องได้ตามโจทย์หน้างาน 
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เพื่อความอ่านง่ายของภาพในสภาพแสงที่หลากหลาย ส่วน “Display (only)” เปิดให้ปรับ 
Brightness และ Contrast ของภาพที่แสดงผลแบบเรียลไทม์ โดยจงใจไม่ให้กระทบการรันโมเดล 
เพ่ือคงความสม่ำเสมอของข้อมูลที่ใช้ตัดสินผลจริง ระหว่างที่ผู้ใช้ปรับค่าดังกล่าว เฟรมบนจอก็จะสว่าง
หรือคมชัดขึ้นตามต้องการ แต่การคัดสินใจ Label_OK หรือ Missing ยังคงอิงข้อมูลดิบจากกล้อง/
ไฟล์ตามเดิม 

Arduino Serial ผู้ใช้เลือกพอร์ต COM และบอดเรต จากนั้นกด Connect เพ่ือเปิดการสื่อสาร 
เมื่อระบบตรวจพบเหตุการณ์สำคัญอย่าง Label_Missing หรือ Cap_Missing ครั้งแรกของแต่ละไอดี 
โปรแกรมจะส่งข้อความคำสั่งตามที่กำหนดไว้ไปยัง Arduino โดยอัตโนมัติ นอกจากนี้ยังมีปุ่ม Send 
now ให้ยิงข้อความทดสอบทันทีโดยไม่ต้องรอเหตุการณ์ เหมาะสำหรับเช็กสายไฟ รีเลย์ หรือการ
ทำงานของอุปกรณ์ต่อพ่วงก่อนขึ้นงานจริง 

สุดท้าย แถวล่างของแผงควบคุมแสดงตัวนับสรุปแบบเรียลไทม์อีกชุดหนึ ่ง ได้แก่จำนวน 
Label_OK, Label_Missing, Cap_OK และ Cap_Missing ซึ่งเพิ่มขึ้นก็ต่อเมื่อกรอบวัตถุพร้อมไอดี
ของมันเข้าสู่ ROI ที่เหมาะสมแล้วเท่านั้น การออกแบบเช่นนี้ทำให้ทีมปฏิบัติการมองเห็นภาพรวมทั้ง
เชิงภาพและเชิงตัวเลขในหน้าจอเดียว เริ่มจากเลือกโมเดลและแหล่งสัญญาณ ตั้งค่า ROI ให้ตรงงาน 
ปรับภาพให้ดูง่าย กด Start และถ้าต้องการส่งสั่งอุปกรณ์ก็เชื่อมต่อ Arduino พร้อมเก็บสถิติลง CSV 
เพ่ือการวิเคราะห์ย้อนหลัง  
 

 
ภาพที่ ก.1 Graphic User Interface (GUI)
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การเขียนโปรแกรมภาษา Python ที่ใช้ในงานวิจัย 
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โปรแกรมหลักที่ใช้ในงานวิจัย 
 

ในภาคผนวกนี้ จะแสดงคำสั่ง (Coding) ทั้งหมดที่ใช้ในการพัฒนางานวิจัยนี้ โดยคำสั่งทั้งหมด
ถูกเขียนด้วยภาษา Python บนโปรแกรม Visual Studio 

 
การนำเข้า Library (Import Library) 
 
import sys 
import time 
import csv 
import threading 
from datetime import datetime 
from pathlib import Path 
from typing import Optional, List, Tuple, Set 
import cv2 
import numpy as np 
import pandas as pd 
import cvzone 
from ultralytics import YOLO 
from tracker import *  # ต้องมี class Tracker.update(boxes)->[[x1,y1,x2,y2,id], ...] 
 
การนำเข้า Library Pyqt5 (Import Library pyqt5) 
 
from PyQt5.QtCore import Qt, QThread, pyqtSignal, QSize, QPoint, QObject 
from PyQt5.QtGui import QImage, QPixmap, QPainter, QPen, QBrush 
from PyQt5.QtWidgets import ( 
    QApplication, QWidget, QLabel, QPushButton, QFileDialog, 
    QVBoxLayout, QHBoxLayout, QGridLayout, QGroupBox, QSpinBox, 
    QDoubleSpinBox, QLineEdit, QMessageBox, QCheckBox, QComboBox, QSlider 
) 
# ---- pyserial (Arduino) ---- 
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try: 
    import serial 
    from serial.tools import list_ports 
    SERIAL_AVAILABLE = True 
except Exception: 
    SERIAL_AVAILABLE = False 
 
TARGET_SIZE = (800, 600)  # (w,h)  ให้การลาก ROI ตรงพิกเซล 1:1 
 
การกำหนดกรอบสี่เหลี่ยมสำหรับส่วนที่เป็นฝาและสลาก 
 
# ============================ Video + ROI Editor 
============================ # 
class VideoWidget(QLabel): 
    roiLabelChanged = pyqtSignal(list) 
    roiCapChanged = pyqtSignal(list) 
 
    def __init__(self, parent=None): 
        super().__init__(parent) 
        self.setAlignment(Qt.AlignCenter) 
        self.setFixedSize(QSize(TARGET_SIZE[0], TARGET_SIZE[1])) 
        self.setStyleSheet("background:#111; color:#aaa; border:1px solid #333;") 
        self._pix: Optional[QPixmap] = None 
 
        self._edit_mode = False 
        self._edit_target = 'Label'  # or 'Cap' 
        self._roi_label: List[Tuple[int, int]] = [(490, 200), (490, 499), (550, 499), (550, 200)] 
        self._roi_cap:   List[Tuple[int, int]] = [(400,   5), (400, 150), (410, 150), (410,   5)] 
 
        self._drag_idx: int = -1 
        self._pick_radius = 10 
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    def setFrame(self, qimg: QImage): 
        self._pix = QPixmap.fromImage(qimg) 
        self._pix = self._pix.scaled(self.size(), Qt.KeepAspectRatio, 
Qt.SmoothTransformation) 
        self.update() 
 
    def setROIs(self, roi_label: List[Tuple[int, int]], roi_cap: List[Tuple[int, int]]): 
        self._roi_label = [tuple(map(int, p)) for p in roi_label] 
        self._roi_cap = [tuple(map(int, p)) for p in roi_cap] 
        self.update() 
 
    def currentROIs(self): 
        return list(self._roi_label), list(self._roi_cap) 
 
    def setEditMode(self, enabled: bool): 
        self._edit_mode = enabled 
        self._drag_idx = -1 
        self.update() 
 
    def setEditTarget(self, target: str): 
        self._edit_target = target 
        self._drag_idx = -1 
        self.update() 
 
    def resetROIs(self, roi_label_default, roi_cap_default): 
        self._roi_label = [tuple(p) for p in roi_label_default] 
        self._roi_cap   = [tuple(p) for p in roi_cap_default] 
        self._drag_idx = -1 
        self.roiLabelChanged.emit(list(self._roi_label)) 
        self.roiCapChanged.emit(list(self._roi_cap)) 
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        self.update() 
 
    def _active_roi(self) -> List[Tuple[int, int]]: 
        return self._roi_label if self._edit_target == 'Label' else self._roi_cap 
 
    def _set_active_roi(self, pts: List[Tuple[int, int]]): 
        if self._edit_target == 'Label': 
            self._roi_label = pts 
            self.roiLabelChanged.emit(list(self._roi_label)) 
        else: 
            self._roi_cap = pts 
            self.roiCapChanged.emit(list(self._roi_cap)) 
 
    def paintEvent(self, e): 
        super().paintEvent(e) 
        painter = QPainter(self) 
        if self._pix is not None: 
            x = (self.width() - self._pix.width()) // 2 
            y = (self.height() - self._pix.height()) // 2 
            painter.drawPixmap(x, y, self._pix) 
 
        if self._edit_mode: 
            pts = self._active_roi() 
            if len(pts) >= 2: 
                painter.setPen(QPen(Qt.green, 2)) 
                for i in range(len(pts)): 
                    x1, y1 = pts[i] 
                    x2, y2 = pts[(i + 1) % len(pts)] 
                    painter.drawLine(x1, y1, x2, y2) 
            painter.setPen(QPen(Qt.white, 1)) 
            painter.setBrush(QBrush(Qt.magenta)) 
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            for (x, y) in pts: 
                painter.drawEllipse(QPoint(int(x), int(y)), 5, 5) 
 
    def mousePressEvent(self, ev): 
        if not self._edit_mode or ev.button() != Qt.LeftButton: 
            return super().mousePressEvent(ev) 
        mx, my = ev.x(), ev.y() 
        pts = self._active_roi() 
        self._drag_idx = -1 
        min_d2 = self._pick_radius * self._pick_radius 
        for i, (x, y) in enumerate(pts): 
            d2 = (mx - x) ** 2 + (my - y) ** 2 
            if d2 <= min_d2: 
                self._drag_idx = i 
                break 
        return super().mousePressEvent(ev) 
 
    def mouseMoveEvent(self, ev): 
        if not self._edit_mode or self._drag_idx < 0: 
            return super().mouseMoveEvent(ev) 
        mx = max(0, min(self.width() - 1, ev.x())) 
        my = max(0, min(self.height() - 1, ev.y())) 
        pts = list(self._active_roi()) 
        pts[self._drag_idx] = (mx, my) 
        self._set_active_roi(pts) 
        self.update() 
        return super().mouseMoveEvent(ev) 
 
    def mouseReleaseEvent(self, ev): 
        if not self._edit_mode: 
            return super().mouseReleaseEvent(ev) 
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        self._drag_idx = -1 
        return super().mouseReleaseEvent(ev) 
 
การติดต่อกับบอร์ด Arduino 
 
# ============================ Serial Manager 
============================ # 
class SerialManager(QObject): 
    status_changed = pyqtSignal(bool, str)  # (is_open, message) 
 
    def __init__(self, parent=None): 
        super().__init__(parent) 
        self.ser: Optional[serial.Serial] = None if SERIAL_AVAILABLE else None 
 
    def list_ports(self) -> List[str]: 
        if not SERIAL_AVAILABLE: 
            return [] 
        return [p.device for p in list_ports.comports()] 
 
    def open(self, port: str, baud: int) -> bool: 
        if not SERIAL_AVAILABLE: 
            self.status_changed.emit(False, "pyserial Not Ready (pip install pyserial)") 
            return False 
        try: 
            self.close() 
            self.ser = serial.Serial(port=port, baudrate=int(baud), timeout=0.1) 
            self.status_changed.emit(True, f"Connected {port} @ {baud}") 
            return True 
        except Exception as e: 
            self.ser = None 
            self.status_changed.emit(False, f"Can not open port: {e}") 



 

 

 

68 

 

            return False 
 
    def close(self): 
        try: 
            if self.ser and self.ser.is_open: 
                self.ser.close() 
        except Exception: 
            pass 
        finally: 
            self.ser = None 
            self.status_changed.emit(False, "Disconnected") 
 
    def is_open(self) -> bool: 
        return bool(self.ser and self.ser.is_open) 
 
    def send_text(self, text: str): 
        if not self.is_open(): 
            return 
        try: 
            self.ser.write(text.encode("ascii", errors="ignore")) 
        except Exception as e: 
            self.status_changed.emit(False, f"Can not send data: {e}") 
            try: 
                self.close() 
            except Exception: 
                pass 
 
Worker Thread  
 
# ============================ Worker Thread ==================== # 
class VideoWorker(QThread): 
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    frame_ready = pyqtSignal(QImage) 
    stats_ready = pyqtSignal(dict) 
    status_msg = pyqtSignal(str) 
    finished_ok = pyqtSignal() 
    failed = pyqtSignal(str) 
    event_detected = pyqtSignal(str, int)  # ('Label_Missing'/'Cap_Missing', track_id) 
 
    def __init__(self, source: str, model_path: str, class_file: str, 
                 roi_label: List[Tuple[int, int]], roi_cap: List[Tuple[int, int]], 
                 conf_thres: float = 0.25, skip_n: int = 0, 
                 target_size: Tuple[int, int] = TARGET_SIZE, 
                 loop_video: bool = True, parent=None): 
        super().__init__(parent) 
        self.source = source 
        self.model_path = model_path 
        self.class_file = class_file 
 
        self._roi_lock = threading.Lock() 
        self._vis_lock = threading.Lock() 
        self._play_lock = threading.Lock() 
 
        self.roi_label = list(roi_label) 
        self.roi_cap = list(roi_cap) 
 
        self._disp_brightness = 0     # beta [-100..100] 
        self._disp_contrast = 1.0     # alpha [0.2..3.0] 
        self._play_speed = 1.0        # 0.25..3.0 
        self._loop_video = bool(loop_video) 
 
        self.conf_thres = conf_thres 
        self.skip_n = max(0, int(skip_n)) 
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        self.target_size = target_size 
 
        self._running = True 
        self._paused = False 
 
        self.trk_label_ok = Tracker() 
        self.trk_label_missing = Tracker() 
        self.trk_cap_ok = Tracker() 
        self.trk_cap_missing = Tracker() 
 
        self.seen_label_ok: Set[int] = set() 
        self.seen_label_missing: Set[int] = set() 
        self.seen_cap_ok: Set[int] = set() 
        self.seen_cap_missing: Set[int] = set() 
 
        try: 
            with open(self.class_file, "r", encoding="utf-8") as f: 
                self.class_names = [ln.strip() for ln in f.read().splitlines() if ln.strip()] 
        except Exception as e: 
            self.class_names = [] 
            self.failed.emit(f"อ่าน class file ไม่ได้: {e}") 
 
        try: 
            self.model = YOLO(self.model_path) 
        except Exception as e: 
            self.model = None 
            self.failed.emit(f"Can't Load Model: {e}") 
 
    # setters (thread-safe) 
    def set_rois(self, roi_label: List[Tuple[int, int]], roi_cap: List[Tuple[int, int]]): 
        with self._roi_lock: 



 

 

 

71 

 

            self.roi_label = list(roi_label) 
            self.roi_cap = list(roi_cap) 
 
    def set_brightness(self, beta: int): 
        beta = max(-100, min(100, int(beta))) 
        with self._vis_lock: 
            self._disp_brightness = beta 
 
    def set_contrast(self, alpha: float): 
        alpha = max(0.2, min(3.0, float(alpha))) 
        with self._vis_lock: 
            self._disp_contrast = alpha 
 
    def set_play_speed(self, spd: float): 
        spd = max(0.25, min(3.0, float(spd))) 
        with self._play_lock: 
            self._play_speed = spd 
 
    def set_loop(self, flag: bool): 
        with self._play_lock: 
            self._loop_video = bool(flag) 
 
    # control 
    def stop(self): 
        self._running = False 
 
    def pause(self, p: bool): 
        self._paused = p 
 
    def reset_counters(self): 
        self.seen_label_ok.clear() 
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        self.seen_label_missing.clear() 
        self.seen_cap_ok.clear() 
        self.seen_cap_missing.clear() 
 
    # helpers 
    def _apply_display_params(self, img: np.ndarray, alpha: float, beta: int) -> 
np.ndarray: 
        return cv2.convertScaleAbs(img, alpha=alpha, beta=beta) if (alpha != 1.0 or beta 
!= 0) else img 
 
    def _emit_frame(self, frame_bgr: np.ndarray): 
        rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB) 
        h, w, ch = rgb.shape 
        qimg = QImage(rgb.data, w, h, ch * w, QImage.Format_RGB888).copy() 
        self.frame_ready.emit(qimg) 
 
    def run(self): 
        if self.model is None: 
            self.failed.emit("Model Not Ready") 
            return 
 
        is_camera = self.source.isdigit() 
        cap = cv2.VideoCapture(self.source if not is_camera else int(self.source)) 
        if not cap.isOpened(): 
            self.failed.emit(f"Can't Open VDO/Camera: {self.source}") 
            return 
 
        fps = cap.get(cv2.CAP_PROP_FPS) or 30.0 
        if fps <= 1e-3 or np.isnan(fps): 
            fps = 30.0 
 



 

 

 

73 

 

        self.status_msg.emit("Running") 
        frame_idx = 0 
        skip_frac_accum = 0.0 
 
        try: 
            while self._running: 
                if self._paused: 
                    time.sleep(0.05) 
                    continue 
 
                t0 = time.time() 
 
                with self._roi_lock: 
                    roi_label = list(self.roi_label) 
                    roi_cap = list(self.roi_cap) 
                with self._vis_lock: 
                    alpha = float(self._disp_contrast) 
                    beta = int(self._disp_brightness) 
                with self._play_lock: 
                    speedf = float(self._play_speed) 
                    loop_flag = bool(self._loop_video) 
 
                # speed>1: skip เฟรมสำหรับไฟล์วิดีโอ 
                if (speedf > 1.0) and (not is_camera): 
                    base_skip = int(speedf) - 1 
                    for _ in range(base_skip): 
                        cap.grab() 
                    skip_frac_accum += (speedf - int(speedf)) 
                    if skip_frac_accum >= 1.0: 
                        cap.grab() 
                        skip_frac_accum -= 1.0 
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                grabbed, frame = cap.read() 
                if not grabbed: 
                    if (not is_camera) and loop_flag: 
                        cap.set(cv2.CAP_PROP_POS_FRAMES, 0) 
                        frame_idx = 0 
                        continue 
                    else: 
                        break 
 
                frame = cv2.resize(frame, self.target_size) 
                frame_disp = self._apply_display_params(frame, alpha, beta) 
 
                do_infer = (frame_idx % (self.skip_n + 1) == 0) 
                frame_idx += 1 
 
                if do_infer: 
                    try: 
                        results = self.model.predict(frame, conf=self.conf_thres, 
verbose=False) 
                    except Exception as e: 
                        self.failed.emit(f"Model running Fail: {e}") 
                        break 
 
                    try: 
                        boxes_tensor = results[0].boxes.data 
                        df = pd.DataFrame(boxes_tensor).astype("float") 
                    except Exception: 
                        df = pd.DataFrame(columns=[0, 1, 2, 3, 4, 5]) 
 
                    boxes_lo, boxes_lm, boxes_co, boxes_cm = [], [], [], [] 
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                    for _, row in df.iterrows(): 
                        x1, y1, x2, y2 = int(row[0]), int(row[1]), int(row[2]), int(row[3]) 
                        cls_idx = int(row[5]) if 5 in df.columns else int(row.get(5, 0)) 
                        cls_name = self.class_names[cls_idx] if 0 <= cls_idx < 
len(self.class_names) else str(cls_idx) 
                        if 'Label_OK' in cls_name: boxes_lo.append([x1, y1, x2, y2]) 
                        elif 'Label_Missing' in cls_name: boxes_lm.append([x1, y1, x2, y2]) 
                        elif 'Cap_OK' in cls_name: boxes_co.append([x1, y1, x2, y2]) 
                        elif 'Cap_Missing' in cls_name: boxes_cm.append([x1, y1, x2, y2]) 
 
                    trk_lo = self.trk_label_ok.update(boxes_lo) 
                    trk_lm = self.trk_label_missing.update(boxes_lm) 
                    trk_co = self.trk_cap_ok.update(boxes_co) 
                    trk_cm = self.trk_cap_missing.update(boxes_cm) 
 
                    # วาด + นับ + แจ้ง event (ครั้งแรกของแต่ละ ID เท่านั้น) 
                    for xA, yA, xB, yB, tid in trk_lo: 
                        if cv2.pointPolygonTest(np.array(roi_label, np.int32), (xB, yB), False) 
>= 0: 
                            cv2.circle(frame_disp, (xB, yB), 7, (255, 0, 255), -1) 
                            cv2.rectangle(frame_disp, (xA, yA), (xB, yB), (255, 255, 255), 2) 
                            cvzone.putTextRect(frame_disp, f'{tid}', (xA, yA), 1, 1) 
                            self.seen_label_ok.add(tid) 
 
                    for xA, yA, xB, yB, tid in trk_lm: 
                        if cv2.pointPolygonTest(np.array(roi_label, np.int32), (xB, yB), False) 
>= 0: 
                            cv2.circle(frame_disp, (xB, yB), 7, (255, 0, 255), -1) 
                            cv2.rectangle(frame_disp, (xA, yA), (xB, yB), (255, 255, 255), 2) 
                            cvzone.putTextRect(frame_disp, f'{tid}', (xA, yA), 1, 1) 
                            if tid not in self.seen_label_missing: 
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                                self.event_detected.emit('Label_Missing', tid) 
                            self.seen_label_missing.add(tid) 
 
                    for xA, yA, xB, yB, tid in trk_co: 
                        if cv2.pointPolygonTest(np.array(roi_cap, np.int32), (xB, yB), False) >= 
0: 
                            cv2.circle(frame_disp, (xB, yB), 7, (255, 0, 255), -1) 
                            cv2.rectangle(frame_disp, (xA, yA), (xB, yB), (255, 255, 255), 2) 
                            cvzone.putTextRect(frame_disp, f'{tid}', (xA, yA), 1, 1) 
                            self.seen_cap_ok.add(tid) 
 
                    for xA, yA, xB, yB, tid in trk_cm: 
                        if cv2.pointPolygonTest(np.array(roi_cap, np.int32), (xB, yB), False) >= 
0: 
                            cv2.circle(frame_disp, (xB, yB), 7, (255, 0, 255), -1) 
                            cv2.rectangle(frame_disp, (xA, yA), (xB, yB), (255, 255, 255), 2) 
                            cvzone.putTextRect(frame_disp, f'{tid}', (xA, yA), 1, 1) 
                            if tid not in self.seen_cap_missing: 
                                self.event_detected.emit('Cap_Missing', tid) 
                            self.seen_cap_missing.add(tid) 
 
                # วาด ROI และ HUD 
                with self._roi_lock: 
                    cv2.polylines(frame_disp, [np.array(self.roi_label, np.int32)], True, (0, 
255, 0), 1) 
                    cv2.polylines(frame_disp, [np.array(self.roi_cap, np.int32)], True, (0, 255, 
0), 1) 
 
                cvzone.putTextRect(frame_disp, f'Label_OK:{len(self.seen_label_ok)}', (50, 
60), 1, 1) 
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                cvzone.putTextRect(frame_disp, 
f'Label_Missing:{len(self.seen_label_missing)}', (50, 100), 1, 1) 
                cvzone.putTextRect(frame_disp, f'Cap_OK:{len(self.seen_cap_ok)}', (50, 
140), 1, 1) 
                cvzone.putTextRect(frame_disp, 
f'Cap_Missing:{len(self.seen_cap_missing)}', (50, 180), 1, 1) 
 
                self._emit_frame(frame_disp) 
                self.stats_ready.emit({ 
                    "Label_OK": len(self.seen_label_ok), 
                    "Label_Missing": len(self.seen_label_missing), 
                    "Cap_OK": len(self.seen_cap_ok), 
                    "Cap_Missing": len(self.seen_cap_missing), 
                }) 
 
                # timing ตาม speed 
                base_dt = 1.0 / max(fps, 1e-3) 
                with self._play_lock: 
                    spd = float(self._play_speed) 
                target_dt = base_dt / max(spd, 1e-3) 
                elapsed = time.time() - t0 
                if target_dt > elapsed: 
                    time.sleep(target_dt - elapsed) 
 
            cap.release() 
            self.finished_ok.emit() 
        except Exception as e: 
            try: 
                cap.release() 
            except Exception: 
                pass 
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            self.failed.emit(str(e)) 
 
 
ส่วนนี้ใช้สำหรับสร้าง ส่วนแสดงผลภาพ และ สร้างปุ่มต่างๆ  
# ============================ Main Window 
============================ # 
class MainWindow(QWidget): 
    def __init__(self): 
        super().__init__() 
        self.setWindowTitle("YOLO Conveyor Inspector - PyQt5 (Arduino Serial)") 
        self.resize(1380, 820) 
 
        # --- Widgets หลัก --- # 
        self.video_widget = VideoWidget() 
 
        # Source 
        self.btn_open_video = QPushButton("Open Video...") 
        self.btn_open_cam = QPushButton("Use Webcam") 
        self.cam_index = QSpinBox(); self.cam_index.setRange(0, 10); 
self.cam_index.setValue(0) 
 
        # Model & Class 
        self.model_path = QLineEdit("best10.pt") 
        self.class_path = QLineEdit("coco1.txt") 
        self.btn_browse_model = QPushButton("...") 
        self.btn_browse_class = QPushButton("...") 
 
        # Inference params 
        self.conf_spin = QDoubleSpinBox(); self.conf_spin.setRange(0.0, 1.0); 
self.conf_spin.setSingleStep(0.05); self.conf_spin.setValue(0.25); 
self.conf_spin.setDecimals(2) 
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        self.skip_spin = QSpinBox(); self.skip_spin.setRange(0, 15); 
self.skip_spin.setValue(0) 
 
        # Display 
        self.bright_slider = QSlider(Qt.Horizontal); self.bright_slider.setRange(-100, 100); 
self.bright_slider.setValue(0) 
        self.bright_spin = QSpinBox(); self.bright_spin.setRange(-100, 100); 
self.bright_spin.setValue(0) 
        self.contrast_slider = QSlider(Qt.Horizontal); self.contrast_slider.setRange(20, 
300); self.contrast_slider.setValue(100) 
        self.contrast_spin = QSpinBox(); self.contrast_spin.setRange(20, 300); 
self.contrast_spin.setValue(100) 
 
        # Speed 
        self.speed_spin = QDoubleSpinBox(); self.speed_spin.setRange(0.25, 3.0); 
self.speed_spin.setSingleStep(0.25); self.speed_spin.setValue(1.0) 
 
        # Run 
        self.btn_start = QPushButton("Start"); self.btn_pause = QPushButton("Pause"); 
self.btn_resume = QPushButton("Resume") 
        self.btn_stop = QPushButton("Stop"); self.btn_reset = QPushButton("Reset 
Counters"); self.btn_snapshot = QPushButton("Snapshot") 
 
        # ROI 
        self.chk_edit_roi = QCheckBox("Edit ROI") 
        self.cbo_roi_target = QComboBox(); self.cbo_roi_target.addItems(["Label", "Cap"]) 
        self.btn_reset_roi = QPushButton("Reset ROI") 
 
        # CSV 
        self.chk_log_csv = QCheckBox("Log to CSV"); self.chk_log_csv.setChecked(True) 
        self.csv_path = QLineEdit("") 
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        self.btn_browse_csv = QPushButton("...") 
 
        # Loop video 
        self.chk_loop = QCheckBox("Loop when finished"); 
self.chk_loop.setChecked(True) 
 
        # --- Arduino Serial UI --- # 
        self.serial_mgr = SerialManager(self) 
        self.cbo_port = QComboBox() 
        self.btn_refresh_ports = QPushButton("Refresh") 
        self.cbo_baud = QComboBox(); 
self.cbo_baud.addItems(["9600","19200","38400","57600","115200"]); 
self.cbo_baud.setCurrentText("115200") 
        self.btn_serial_connect = QPushButton("Connect") 
        self.lbl_serial_status = QLabel("Disconnected") 
        self.lbl_serial_status.setStyleSheet("color:#b33; font-weight:bold;") 
        # Event mapping 
        self.chk_send_label_missing = QCheckBox("Send on Label_Missing"); 
self.chk_send_label_missing.setChecked(True) 
        self.txt_cmd_label_missing = QLineEdit("1") 
        self.btn_send_label_missing = QPushButton("Send now") 
        self.chk_send_cap_missing = QCheckBox("Send on Cap_Missing"); 
self.chk_send_cap_missing.setChecked(True) 
        self.txt_cmd_cap_missing = QLineEdit("2") 
        self.btn_send_cap_missing = QPushButton("Send now") 
 
        # หากไม่มี pyserial 
        if not SERIAL_AVAILABLE: 
            self.lbl_serial_status.setText("pyserial not installed") 
            self.lbl_serial_status.setStyleSheet("color:#b33; font-weight:bold;") 
            self.btn_serial_connect.setEnabled(False) 
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            self.btn_send_label_missing.setEnabled(False) 
            self.btn_send_cap_missing.setEnabled(False) 
 
        # Layout: top 
        top_grid = QGridLayout() 
        top_grid.addWidget(QLabel("Model:"), 0, 0); top_grid.addWidget(self.model_path, 
0, 1); top_grid.addWidget(self.btn_browse_model, 0, 2) 
        top_grid.addWidget(QLabel("Classes:"), 1, 0); top_grid.addWidget(self.class_path, 
1, 1); top_grid.addWidget(self.btn_browse_class, 1, 2) 
        top_grid.addWidget(QLabel("Confidence:"), 2, 0); 
top_grid.addWidget(self.conf_spin, 2, 1) 
        top_grid.addWidget(QLabel("Skip N frames:"), 3, 0); 
top_grid.addWidget(self.skip_spin, 3, 1) 
 
        # Display group 
        bright_row = QHBoxLayout(); bright_row.addWidget(QLabel("Brightness:")); 
bright_row.addWidget(self.bright_slider, 1); bright_row.addWidget(self.bright_spin) 
        contrast_row = QHBoxLayout(); contrast_row.addWidget(QLabel("Contrast:")); 
contrast_row.addWidget(self.contrast_slider, 1); 
contrast_row.addWidget(self.contrast_spin) 
        display_box = QGroupBox("Display (only)"); vb_disp = QVBoxLayout(); 
vb_disp.addLayout(bright_row); vb_disp.addLayout(contrast_row); 
display_box.setLayout(vb_disp) 
 
        # Source 
        src_row = QHBoxLayout(); src_row.addWidget(self.btn_open_video); 
src_row.addSpacing(10); src_row.addWidget(self.btn_open_cam); 
src_row.addWidget(QLabel("Index:")); src_row.addWidget(self.cam_index) 
        src_box = QGroupBox("Source"); src_box.setLayout(src_row) 
 
        # Playback 
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        speed_row = QHBoxLayout(); speed_row.addWidget(QLabel("Playback Speed 
(x):")); speed_row.addWidget(self.speed_spin) 
        playback_box = QGroupBox("Playback"); playback_box.setLayout(speed_row) 
 
        # Run 
        run_row = QHBoxLayout() 
        for w in (self.btn_start, self.btn_pause, self.btn_resume, self.btn_stop, 
self.btn_reset, self.btn_snapshot): run_row.addWidget(w) 
        run_box = QGroupBox("Run"); run_box.setLayout(run_row) 
 
        # ROI 
        roi_row = QHBoxLayout();  
        roi_row.addWidget(self.chk_edit_roi); roi_row.addWidget(QLabel("ROI Target:")); 
roi_row.addWidget(self.cbo_roi_target); roi_row.addWidget(self.btn_reset_roi) 
        roi_box = QGroupBox("ROI Edit"); roi_box.setLayout(roi_row) 
 
        # CSV 
        csv_row = QHBoxLayout(); csv_row.addWidget(self.chk_log_csv); 
csv_row.addWidget(self.csv_path, 1); csv_row.addWidget(self.btn_browse_csv) 
        csv_box = QGroupBox("CSV Logging"); csv_box.setLayout(csv_row) 
 
        # Loop 
        loop_row = QHBoxLayout(); loop_row.addWidget(self.chk_loop) 
        loop_box = QGroupBox("End-of-Video"); loop_box.setLayout(loop_row) 
 
        # Stats 
        self.lbl_label_ok = QLabel("Label_OK: 0"); self.lbl_label_missing = 
QLabel("Label_Missing: 0") 
        self.lbl_cap_ok = QLabel("Cap_OK: 0"); self.lbl_cap_missing = 
QLabel("Cap_Missing: 0") 
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        for lbl in (self.lbl_label_ok, self.lbl_label_missing, self.lbl_cap_ok, 
self.lbl_cap_missing): lbl.setStyleSheet("font-weight:bold;") 
        stats_row = QHBoxLayout() 
        for w in (self.lbl_label_ok, self.lbl_label_missing, self.lbl_cap_ok, 
self.lbl_cap_missing): stats_row.addWidget(w) 
        stats_box = QGroupBox("Counters"); stats_box.setLayout(stats_row) 
 
        # --- Serial group UI --- # 
        serial_top = QHBoxLayout() 
        serial_top.addWidget(QLabel("Port:")); serial_top.addWidget(self.cbo_port) 
        serial_top.addWidget(self.btn_refresh_ports) 
        serial_top.addWidget(QLabel("Baud:")); serial_top.addWidget(self.cbo_baud) 
        serial_top.addWidget(self.btn_serial_connect) 
        serial_top.addWidget(self.lbl_serial_status, 1) 
 
        serial_ev1 = QHBoxLayout() 
        serial_ev1.addWidget(self.chk_send_label_missing) 
        serial_ev1.addWidget(QLabel("Cmd:")); 
serial_ev1.addWidget(self.txt_cmd_label_missing) 
        serial_ev1.addWidget(self.btn_send_label_missing) 
 
        serial_ev2 = QHBoxLayout() 
        serial_ev2.addWidget(self.chk_send_cap_missing) 
        serial_ev2.addWidget(QLabel("Cmd:")); 
serial_ev2.addWidget(self.txt_cmd_cap_missing) 
        serial_ev2.addWidget(self.btn_send_cap_missing) 
 
        serial_box = QGroupBox("Arduino Serial") 
        vb_serial = QVBoxLayout() 
        vb_serial.addLayout(serial_top) 
        vb_serial.addLayout(serial_ev1) 
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        vb_serial.addLayout(serial_ev2) 
        serial_box.setLayout(vb_serial) 
 
        # Right panel 
        right = QVBoxLayout() 
        right.addLayout(top_grid) 
        right.addWidget(src_box) 
        right.addWidget(playback_box) 
        right.addWidget(run_box) 
        right.addWidget(roi_box) 
        right.addWidget(csv_box) 
        right.addWidget(loop_box) 
        right.addWidget(display_box) 
        right.addWidget(serial_box) 
        right.addWidget(stats_box) 
        right.addStretch(1) 
 
        main = QHBoxLayout(self) 
        main.addWidget(self.video_widget, 3) 
        main.addLayout(right, 2) 
 
        # Connections 
        self.btn_browse_model.clicked.connect(self._browse_model) 
        self.btn_browse_class.clicked.connect(self._browse_class) 
        self.btn_open_video.clicked.connect(self._choose_video) 
        self.btn_open_cam.clicked.connect(self._use_cam) 
        self.btn_start.clicked.connect(self._start) 
        self.btn_pause.clicked.connect(self._pause) 
        self.btn_resume.clicked.connect(self._resume) 
        self.btn_stop.clicked.connect(self._stop) 
        self.btn_reset.clicked.connect(self._reset_counters) 
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        self.btn_snapshot.clicked.connect(self._snapshot) 
 
        self.chk_edit_roi.toggled.connect(self._toggle_edit_roi) 
        self.cbo_roi_target.currentTextChanged.connect(self._change_roi_target) 
        self.btn_reset_roi.clicked.connect(self._reset_roi) 
        self.video_widget.roiLabelChanged.connect(self._roi_label_changed) 
        self.video_widget.roiCapChanged.connect(self._roi_cap_changed) 
 
        self.btn_browse_csv.clicked.connect(self._browse_csv) 
 
        # Display sync 
        self.bright_slider.valueChanged.connect(self.bright_spin.setValue) 
        self.bright_spin.valueChanged.connect(self.bright_slider.setValue) 
        self.bright_spin.valueChanged.connect(self._set_brightness) 
        self.contrast_slider.valueChanged.connect(self.contrast_spin.setValue) 
        self.contrast_spin.valueChanged.connect(self.contrast_slider.setValue) 
        self.contrast_spin.valueChanged.connect(self._set_contrast) 
        self.speed_spin.valueChanged.connect(self._set_speed) 
        self.chk_loop.toggled.connect(self._set_loop) 
 
        # Serial connections 
        self.btn_refresh_ports.clicked.connect(self._refresh_ports) 
        self.btn_serial_connect.clicked.connect(self._toggle_serial) 
        self.serial_mgr.status_changed.connect(self._on_serial_status) 
        self.btn_send_label_missing.clicked.connect(lambda: 
self._serial_send(self.txt_cmd_label_missing.text())) 
        self.btn_send_cap_missing.clicked.connect(lambda: 
self._serial_send(self.txt_cmd_cap_missing.text())) 
 
 
        # Defaults 
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        self.source_str: Optional[str] = "speed7.mp4" 
        self.worker: Optional[VideoWorker] = None 
 
        self._roi_label_default = [(490, 200), (490, 499), (550, 499), (550, 200)] 
        self._roi_cap_default   = [(400,   5), (400, 150), (410, 150), (410,   5)] 
        self.video_widget.setROIs(self._roi_label_default, self._roi_cap_default) 
 
        # CSV state 
        self.logs_dir = Path("logs"); self.logs_dir.mkdir(exist_ok=True) 
        self._csv_enabled = True 
        self._csv_file: Optional[open] = None 
        self._csv_writer: Optional[csv.writer] = None 
 
        # Init serial ports list 
        self._refresh_ports() 
 
    # --- Source/Model --- 
    def _browse_model(self): 
        p, _ = QFileDialog.getOpenFileName(self, "Select Model (.pt)", "", "PyTorch 
model (*.pt)") 
        if p: self.model_path.setText(p) 
 
    def _browse_class(self): 
        p, _ = QFileDialog.getOpenFileName(self, "Select Class Names (.txt)", "", "Text 
files (*.txt)") 
        if p: self.class_path.setText(p) 
 
    def _choose_video(self): 
        p, _ = QFileDialog.getOpenFileName(self, "Select Video", "", "Video files (*.mp4 
*.avi *.mkv *.mov)") 
        if p: self.source_str = p 
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    def _use_cam(self): 
        self.source_str = str(self.cam_index.value()) 
 
    # --- Run controls --- 
    def _start(self): 
        if self.worker is not None and self.worker.isRunning(): 
            QMessageBox.information(self, "Info", "กำลงัรันอยู่แล้ว"); return 
        if not self.source_str: 
            QMessageBox.warning(self, "Warning", "ยังไม่ได้เลือกแหล่งวิดีโอ/กล้อง"); return 
 
        model_p = self.model_path.text().strip() 
        class_p = self.class_path.text().strip() 
        if not Path(model_p).exists(): 
            QMessageBox.warning(self, "Warning", f"ไม่พบโมเดล: {model_p}"); return 
        if not Path(class_p).exists(): 
            QMessageBox.warning(self, "Warning", f"ไม่พบไฟล์คลาส: {class_p}"); return 
 
        # CSV auto 
        self._csv_enabled = self.chk_log_csv.isChecked() 
        if self._csv_enabled: 
            csv_p = self.csv_path.text().strip() 
            if not csv_p: 
                csv_p = self.logs_dir / 
f"logs_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv" 
                self.csv_path.setText(str(csv_p)) 
            try: 
                self._csv_file = open(csv_p, "w", newline="", encoding="utf-8") 
                self._csv_writer = csv.writer(self._csv_file) 
                self._csv_writer.writerow([ 
                    "timestamp", 



 

 

 

88 

 

                    "Label_OK","Label_Missing","Cap_OK","Cap_Missing", 
                    
"source","model","conf","skip_n","speed_x","alpha_contrast","beta_brightness", 
                    "roi_label","roi_cap", 
                    "serial_port","serial_baud" 
                ]) 
            except Exception as e: 
                QMessageBox.critical(self, "CSV Error", f"ไม่สามารถเปิดไฟล์ CSV ได้: {e}") 
                self._csv_enabled = False; self._csv_file = None; self._csv_writer = None 
 
        rl, rc = self.video_widget.currentROIs() 
 
        self.worker = VideoWorker( 
            source=self.source_str, 
            model_path=model_p, 
            class_file=class_p, 
            roi_label=rl, 
            roi_cap=rc, 
            conf_thres=float(self.conf_spin.value()), 
            skip_n=int(self.skip_spin.value()), 
            target_size=TARGET_SIZE, 
            loop_video=self.chk_loop.isChecked(), 
        ) 
        self.worker.frame_ready.connect(self._update_frame) 
        self.worker.stats_ready.connect(self._update_stats) 
        self.worker.status_msg.connect(self._status) 
        self.worker.finished_ok.connect(self._finished) 
        self.worker.failed.connect(self._failed) 
        # รับสัญญาณ event จาก worker -> ส่ง Serial ตามการตั้งค่า 
        self.worker.event_detected.connect(self._on_worker_event) 
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        # init display/speed/loop 
        self._set_brightness(self.bright_spin.value()) 
        self._set_contrast(self.contrast_spin.value()) 
        self._set_speed(self.speed_spin.value()) 
        self._set_loop(self.chk_loop.isChecked()) 
 
        self.worker.start() 
        self._status("Start") 
 
    def _pause(self): 
        if self.worker and self.worker.isRunning(): 
            self.worker.pause(True); self._status("Pause") 
 
    def _resume(self): 
        if self.worker and self.worker.isRunning(): 
            self.worker.pause(False); self._status("Continue") 
 
    def _stop(self): 
        if self.worker: 
            self.worker.stop(); self.worker.wait(1500); self.worker = None; 
self._status("Stoped") 
        self._close_csv() 
 
    def _reset_counters(self): 
        if self.worker: self.worker.reset_counters() 
        self.lbl_label_ok.setText("Label_OK: 0"); 
self.lbl_label_missing.setText("Label_Missing: 0") 
        self.lbl_cap_ok.setText("Cap_OK: 0"); self.lbl_cap_missing.setText("Cap_Missing: 
0") 
 
    # --- Display/Speed/Loop handlers --- 
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    def _set_brightness(self, val: int): 
        if self.worker: self.worker.set_brightness(int(val)) 
 
    def _set_contrast(self, ui_val: int): 
        alpha = float(ui_val) / 100.0 
        if self.worker: self.worker.set_contrast(alpha) 
 
    def _set_speed(self, spd: float): 
        if self.worker: self.worker.set_play_speed(float(spd)) 
 
    def _set_loop(self, flag: bool): 
        if self.worker: self.worker.set_loop(bool(flag)) 
 
    # --- ROI edit --- 
    def _toggle_edit_roi(self, checked: bool): 
        self.video_widget.setEditMode(checked) 
 
    def _change_roi_target(self, text: str): 
        self.video_widget.setEditTarget(text) 
 
    def _reset_roi(self): 
        self.video_widget.resetROIs(self._roi_label_default, self._roi_cap_default) 
        if self.worker: 
            rl, rc = self.video_widget.currentROIs() 
            self.worker.set_rois(rl, rc) 
 
    def _roi_label_changed(self, pts: list): 
        if self.worker: 
            rl, rc = self.video_widget.currentROIs() 
            self.worker.set_rois(rl, rc) 
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    def _roi_cap_changed(self, pts: list): 
        if self.worker: 
            rl, rc = self.video_widget.currentROIs() 
            self.worker.set_rois(rl, rc) 
 
    # --- CSV --- 
    def _browse_csv(self): 
        p, _ = QFileDialog.getSaveFileName(self, "Select CSV file", "", "CSV files (*.csv)") 
        if p: self.csv_path.setText(p) 
 
    def _update_stats(self, d: dict): 
        self.lbl_label_ok.setText(f"Label_OK: {d.get('Label_OK', 0)}") 
        self.lbl_label_missing.setText(f"Label_Missing: {d.get('Label_Missing', 0)}") 
        self.lbl_cap_ok.setText(f"Cap_OK: {d.get('Cap_OK', 0)}") 
        self.lbl_cap_missing.setText(f"Cap_Missing: {d.get('Cap_Missing', 0)}") 
 
        if self._csv_enabled and self._csv_writer: 
            ts = datetime.now().isoformat(timespec='seconds') 
            rl, rc = self.video_widget.currentROIs() 
            port = self.cbo_port.currentText().strip() 
            baud = self.cbo_baud.currentText().strip() 
            self._csv_writer.writerow([ 
                ts, 
                d.get('Label_OK', 0), 
                d.get('Label_Missing', 0), 
                d.get('Cap_OK', 0), 
                d.get('Cap_Missing', 0), 
                self.source_str or "", 
                self.model_path.text().strip(), 
                f"{self.conf_spin.value():.2f}", 
                int(self.skip_spin.value()), 
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                float(self.speed_spin.value()), 
                float(self.contrast_spin.value()) / 100.0,  # alpha 
                int(self.bright_spin.value()),               # beta 
                rl, rc, 
                port, baud 
            ]) 
            try: self._csv_file.flush() 
            except Exception: pass 
 
    def _update_frame(self, qimg: QImage): 
        self.video_widget.setFrame(qimg) 
 
    def _status(self, msg: str): 
        self.setWindowTitle(f"IS_Wuthiphat Bottle Inspection - {msg}") 
 
    def _finished(self): 
        if not self.chk_loop.isChecked(): 
            self._status("VDO Finish (Press Start To Continue)") 
            QMessageBox.information(self, "Info", "VDO FInished\nPress Start to replay or 
change file") 
        self.worker = None 
        self._close_csv() 
 
    def _failed(self, err: str): 
        QMessageBox.critical(self, "Error", err) 
        self._status("Error") 
        self.worker = None 
        self._close_csv() 
 
    def _close_csv(self): 
        try: 
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            if self._csv_file: 
                self._csv_file.flush() 
                self._csv_file.close() 
        except Exception: 
            pass 
        self._csv_file = None 
        self._csv_writer = None 
        self._csv_enabled = False 
 
    # --- Snapshot --- 
    def _snapshot(self): 
        default_name = 
f"snapshot_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png" 
        p, _ = QFileDialog.getSaveFileName(self, "Save Snapshot", default_name, "PNG 
images (*.png)") 
        if not p: p = default_name 
        try: 
            pix = self.video_widget.grab() 
            ok = pix.save(p, "PNG") 
            if ok: self._status(f"Saved snapshot: {Path(p).name}") 
            else: QMessageBox.warning(self, "Snapshot", "Can't save") 
        except Exception as e: 
            QMessageBox.critical(self, "Snapshot Error", str(e)) 
 
    # --- Serial helpers --- 
    def _refresh_ports(self): 
        self.cbo_port.clear() 
        if SERIAL_AVAILABLE: 
            ports = self.serial_mgr.list_ports() 
            self.cbo_port.addItems(ports) 
        else: 
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            self.cbo_port.addItem("N/A") 
 
    def _toggle_serial(self): 
        if not SERIAL_AVAILABLE: 
            QMessageBox.warning(self, "Serial", "Do not install pyserial: pip install 
pyserial") 
            return 
        if self.serial_mgr.is_open(): 
            self.serial_mgr.close() 
            self.btn_serial_connect.setText("Connect") 
        else: 
            port = self.cbo_port.currentText().strip() 
            baud = int(self.cbo_baud.currentText()) 
            if not port: 
                QMessageBox.warning(self, "Serial", "Please Select Port") 
                return 
            ok = self.serial_mgr.open(port, baud) 
            if ok: 
                self.btn_serial_connect.setText("Disconnect") 
 
    def _on_serial_status(self, is_open: bool, message: str): 
        self.lbl_serial_status.setText(message) 
        self.lbl_serial_status.setStyleSheet("color:#3b3; font-weight:bold;" if is_open 
else "color:#b33; font-weight:bold;") 
 
    def _serial_send(self, text: str): 
        self.serial_mgr.send_text(text) 
 
    # รับ event จาก worker แล้วเลือกส่ง Serial ตาม setting 
    def _on_worker_event(self, etype: str, tid: int): 
        if etype == 'Label_Missing' and self.chk_send_label_missing.isChecked(): 
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            self._serial_send(self.txt_cmd_label_missing.text()) 
        elif etype == 'Cap_Missing' and self.chk_send_cap_missing.isChecked(): 
            self._serial_send(self.txt_cmd_cap_missing.text()) 
 
    def closeEvent(self, event): 
        try: 
            if self.worker: 
                self.worker.stop() 
                self.worker.wait(1500) 
        except Exception: 
            pass 
        try: 
            self.serial_mgr.close() 
        except Exception: 
            pass 
        self._close_csv() 
        event.accept() 
 
def main(): 
    app = QApplication(sys.argv) 
    w = MainWindow() 
    w.show() 
    sys.exit(app.exec_()) 
if __name__ == "__main__": 
    main() 

โปรแกรมคำสั่งย่อยสำหรับหาจุดศูนย์กลางภาพ 
 
คำสั่งส่วนนี้คือโมดูลย่อย (Sub module) ใช้สำหรับหาจุดศูนย์กลางภาพ (Tracker) ซึ่ง

พัฒนาขึ้นบนบนโปรแกรม Visual Studio 
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โมดูลย่อย 
 
import math 
class Tracker: 
    def __init__(self): 
        # Store the center positions of the objects 
        self.center_points = {} 
        # Keep the count of the IDs 
        # each time a new object id detected, the count will increase by one 
        self.id_count = 0 
    def update(self, objects_rect): 
        # Objects boxes and ids 
        objects_bbs_ids = [] 
 
        # Get center point of new object 
        for rect in objects_rect: 
            x, y, w, h = rect 
            cx = (x + x + w) // 2 
            cy = (y + y + h) // 2 
 
            # Find out if that object was detected already 
            same_object_detected = False 
            for id, pt in self.center_points.items(): 
                dist = math.hypot(cx - pt[0], cy - pt[1]) 
                if dist < 35: 
                    self.center_points[id] = (cx, cy) 
                    #print(self.center_points) 
                    objects_bbs_ids.append([x, y, w, h, id]) 
                    same_object_detected = True 
                    break 
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            # New object is detected we assign the ID to that object 
            if same_object_detected is False: 
                self.center_points[self.id_count] = (cx, cy) 
                objects_bbs_ids.append([x, y, w, h, self.id_count]) 
                self.id_count += 1 
 
        # Clean the dictionary by center points to remove IDS not used anymore 
        new_center_points = {} 
        for obj_bb_id in objects_bbs_ids: 
            _, _, _, _, object_id = obj_bb_id 
            center = self.center_points[object_id] 
            new_center_points[object_id] = center 
 
        # Update dictionary with IDs not used removed 
        self.center_points = new_center_points.copy() 
        return objects_bbs_ids  
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โปรแกรมสำหรับควบคุมบอร์ด Arduino 
 

คำสั่งในส่วนนี้ แสดงถึงคำสั่งที่ใช้งานบอดร์ควบคุม Auduino เพ่ือทำการส่งสัญญาณไปยังตัว 
Rejecter เพ่ือทำการดีดขวดที่มีตำหนิออกจากสายพาน 
 
Arduino Coding 
 
// Include the AccelStepper library 
 
#include <AccelStepper.h> 
 
// Define motor interface type (1 for driver) 
#define motorInterfaceType 3 
 
// Define step and direction pins 
const int stepPin = 9; 
const int dirPin = 8; 
 
// Create a stepper object 
AccelStepper stepper(motorInterfaceType, stepPin, dirPin); 
 
void setup() { 
   
  Serial.begin(9600); // Initialize serial communication at 9600 baud 
  pinMode(13, OUTPUT); // Set pin 13 (built-in LED) as an output 
 
  // Set the maximum speed (steps per second) 
  stepper.setMaxSpeed(20000);  
 
  // Set the desired constant speed (steps per second) 
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  stepper.setSpeed(-4000);  
   
} 
 
void loop() { 
  // Move the stepper motor at the set constant speed 
   stepper.runSpeed(); 
  if (Serial.available() > 0) { // Check if data is available to read 
    char command = Serial.read(); // Read the incoming byte 
     
 
    if (command == '1') { 
      //delay(50); 
      digitalWrite(13, HIGH); // Turn LED on 
      delay(200); 
    } else if (command == '0') { 
      digitalWrite(13, LOW); // Turn LED off 
    } 
  } 
} 
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ประวัติผู้เขียน 
 

ชื่อ  วุฒิภัทร ณัดฐาปกรณ 

ชื่อการค้นคว้าอิสระ ระบบตรวจจับชิ้นงานเสียบนสายพานลำเลียงอัตโนมัติด้วยการเรียนรู้
ของเครื่อง 

สาขาวิชา  วิทยาศาสตร์ข้อมูลเพื่อนวัตกรรม 
 

ประวัติ สำเร็จการศึกษาระดับปริญญาตรี  
วิศวกรรมศาสตรบัณฑิต สาขาวิชา วิศวกรรมไฟฟ้า ไฟฟ้ากำลัง 
มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี 
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