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CHAPTER 1 

INTRODUCTION 
 

1.1 Toward Reinforcement Learning in Portfolio 

In recent years, the financial industry has shifted toward algorithmic and data-

driven trading strategies, driven by the vast expansion of market data and the increasing 

power of computational technologies. While effective in some contexts (Hendershott 

et al., 2011), traditional trading strategies often need help adapting to rapid market 

dynamics changes. This thesis investigates the application of Deep Reinforcement 

Learning (DRL) for dynamic portfolio management, specifically targeting the Stock 

Exchange of Thailand (SET). By exploring advanced DRL algorithms, this research 

aims to design a robust and adaptive trading model capable of balancing returns with 

risk. 

Rule-based and machine learning-based approaches are the two primary groups 

into which trading strategies are usually separated. Using traditional trading strategies 

or statistical models that may concentrate on price momentum, liquidity, or market 

sentiment, rule-based trading is predicated on predetermined rules created by human 

specialists. On the other hand, trading that relies on machine learning trains models 

with past data so that they can make trades on their own. Prominent methods in this 

field include Recurrent Reinforcement Learning (RRL) and Trading Deep Q-Network 

(TDQN) (Théate & Ernst, 2021). 

By gleaning patterns and insights from past data, deep learning-driven 

algorithmic trading techniques seek to maximize investment decisions, helping 

investors make better judgments and reap higher returns. The use of deep reinforcement 

learning algorithms in algorithmic trading has been made possible by developments in 

high-performance computing and deep learning algorithms (Liu et al., 2020), which 

have produced automated trading techniques, particularly for situations involving a 

single asset. Through interactions with dynamic surroundings, these algorithms learn 

and hone their methods to identify profitable patterns and create superior long-term 

solutions. The Q function represents the expected cumulative reward an agent can 

receive in deep reinforcement learning when it performs a specific action in a particular 

state and then proceeds to follow a particular policy. Q networks are designed to learn 

the optimal action-selection strategy by estimating the Q value (expected cumulative 

reward) for various state-action pairs. The design of Q-Networks incorporating neural 

networks like Multilayer Perceptrons (MLP) (Li et al., 2019), Recurrent Neural 

Networks (RNN), and Convolutional Neural Networks (CNN) (Dang, 2020) 

significantly impacts the model's performance. Additionally, algorithms such as 

Proximal Policy Optimization (PPO) offer more excellent stability and efficiency 

compared to traditional DQN, making them particularly suitable for complex trading 

environments. Q networks are made to estimate the Q value, or expected cumulative 

reward, for different state-action combinations to learn the best action-selection 

strategy. The architecture of Q-Networks, which incorporates neural networks, 

dramatically influences the model's performance. Furthermore, compared to classic 
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DQN, algorithms like Proximal Policy Optimization (PPO) are more stable and 

efficient, which makes them especially useful in complicated trading situations. 

A custom trading environment, StockTradingEnv, is developed using OpenAI 

Gym to simulate the dynamics of the Stock Exchange of Thailand (SET). The 

environment defines a discrete action space representing buy and sell decisions and an 

observation space comprising key financial indicators such as open, high, low, close 

prices, volume, and Volume-Weighted Average Price (VWAP). The reward function is 

meticulously crafted to reflect portfolio performance, considering net profit, volatility, 

and trade ratios. This tailored environment allows the Deep Reinforcement Learning 

(DRL) agent to interact realistically with market data, facilitating the development of 

effective trading strategies. 

Existing financial time series feature extraction methods, like linear models and 

traditional neural networks, often need help capturing complex and nonlinear 

relationships in the data, leading to poor prediction performance due to overfitting or 

underfitting. State-of-the-art time series feature extraction networks have been designed 

to address these challenges using advanced techniques and perspectives. 

However, existing trading strategies often rely on single models or algorithms 

that may perform well under certain market conditions but fail when conditions change 

or unexpected events occur (Cheng et al., 2021; Nan et al., 2022; Taghian et al., 2022). 

This can lead to suboptimal trading decisions and lost profits. It is crucial to develop 

adaptive trading strategies that can be learned from and adjusted to different market 

conditions to tackle this issue. 

Financial markets are complex systems characterized by high volatility and non-

linearity, making traditional stock trading strategies often insufficient. Machine 

learning, particularly reinforcement learning (RL), has shown promise in addressing 

these challenges by enabling algorithms to learn and adapt to dynamic market 

conditions. Among the RL approaches, Advantage Actor-Critic (A2C) has emerged as 

a powerful method that combines the benefits of policy-based and value-based 

strategies. A2C employs an actor, which proposes actions, and a critic, which evaluates 

them, facilitating more stable and efficient learning than standalone methods like DQN. 

The actor-network in A2C is responsible for selecting actions based on the current 

policy, while the critic network estimates the value function, providing feedback that 

helps refine the policy. This dual-network architecture allows A2C to reduce the 

variance in policy updates, leading to more reliable convergence during training. 

Despite its advantages, A2C can face limitations in terms of sample efficiency 

and scalability, especially in highly volatile environments such as financial markets 

where rapid and significant changes are commonplace. These challenges necessitate the 

exploration of more advanced RL algorithms that can offer enhanced stability and 

efficiency. Proximal Policy Optimization, a more recent reinforcement learning 

algorithm, addresses these limitations by introducing a clipped surrogate objective 

function that prevents large, destabilizing updates to the policy. This clipping 

mechanism ensures that policy updates remain within a trust region, maintaining a 

balance between exploration and exploitation while safeguarding against drastic 

changes that could undermine the learning process. 

PPO has been successfully applied to various domains, including gaming and 

robotics, demonstrating its robustness and adaptability. Its improved stability and 
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efficiency over traditional methods like DQN and even A2C make it well-suited for 

complex trading environments where maintaining a reliable and adaptable strategy is 

crucial. This paper investigates the efficacy of PPO in stock portfolio optimization on 

the Stock Exchange of Thailand. By leveraging historical stock data, the author 

develops a PPO agent to make trading decisions, optimizing the portfolio's return. This 

paper details the model architecture, training process, data preprocessing techniques, 

and performance evaluation of the PPO agent, providing a comprehensive case on its 

application in financial markets. 

1.2 Objective 

The main objectives of this study are described below: 

1.2.1 To develop and refine deep reinforcement learning algorithms customized 

for the unique characteristics and dynamics of the Stock Exchange of Thailand. 

1.2.2 To optimize trading strategies for portfolio construction on maximizing 

returns. 

1.2.3 To evaluate the developed DRL models and trading strategies through 

extensive backtesting on historical data. 

1.3 Scope 

A portfolio of 10 stocks from the SET is chosen based on their market 

capitalization, liquidity, and sector diversity to ensure representative coverage of the 

market. 

1.4 Outline of Thesis 

Chapter 2 provides a comprehensive review of existing research in stock 

prediction and algorithmic trading, focusing on the application of DRL. The chapter 

discusses traditional stock prediction models like Autoregressive Integrated Moving 

Average (ARIMA) and Generalized Autoregressive Conditional Heteroskedasticity 

(GARCH), highlighting their limitations in dynamic market conditions. It then explores 

how Machine Learning and Deep Learning techniques, such as Support Vector 

Machine (SVM), Random Forests, and Long-Short Term Memory (LSTM) networks, 

have enhanced prediction accuracy but still face challenges like overfitting. 

The fundamentals of Reinforcement Learning are introduced, explaining how RL 

agents interact with their environment to make trading decisions. Advanced DRL 

algorithms like DQN and PPO are then discussed, showcasing their superiority in 

adapting to volatile markets. The chapter also delves into algorithmic trading systems, 

outlining their components and the importance of performance metrics like Return on 

Investment (ROI) and Sharpe Ratio. 

Through this extensive review, the chapter identifies significant research gaps, 

particularly the limited application of DRL in emerging markets like Thailand. This 

sets the stage for the subsequent chapters, where your research aims to develop a DRL-

based automated trading system tailored to the unique challenges of the Stock Exchange 

of Thailand, thereby contributing to both academic knowledge and practical trading 

strategies. 

Chapter 3 is dedicated to the development and practical application of the DRL 

model for the automation of portfolio optimization in the Stock Exchange of Thailand. 
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The DRL agent's basic architecture and state space's proper setting is defined at the start 

of this chapter. Furthermore, the traded volumes of stocks also determine the pricing of 

them. The trader can have other insights into the stock price based on the stocks. This 

is achieved using technical indicators for the targeted stocks or the VWAP. Thus, the 

development of the DRL agent is tackled with the construction of the reward function’s 

part that seeks to suggest the yields. The straightforward approach to how the Proximal 

Policy Optimization (PPO) method is implemented to practice reinforcement learning 

and how the agent is then trained to make appropriate trading decisions are covered in 

this part. The part also includes parts on model architecture, training process, and 

additional strategies to improve its performance, such as hyperparameter tuning. 

Chapter 4 presents the experimental results and analysis of the developed DRL 

trading strategies, specifically Proximal Policy Optimization (PPO), Advantage Actor-

Critic (A2C), and Deep Q-Network (DQN), evaluated using historical data from the 

SET. The chapter begins by outlining the experimental setup and objectives, including 

the testing methodology with a separate dataset not seen during training. The evaluation 

metrics used ROI, Sharpe Ratio, Maximum Drawdown, and Calmar Ratio to assess 

profitability and risk management capabilities. It then delves into the performance 

evaluation of each agent, providing detailed portfolio results and analyses of their 

trading behaviors, supported by tables summarizing key performance metrics and 

figures illustrating the agents' buy and sell signals alongside stock price movements. 

The comparative analysis highlights the strengths and weaknesses of each agent in 

terms of profitability and risk management, discussing their consistency across 

different stocks and market conditions and identifying areas where strategies could be 

refined for improved performance. The chapter concludes with a summary of the key 

findings, assessing the agents' effectiveness in trading within the SET market, reflecting 

on the implications for real-world trading strategies, and suggesting future work to 

enhance the agents' performance and consistency across diverse market environments. 

Chapter 5 summarizes the key findings of the research, emphasizing the 

contributions of the DRL-based portfolio optimization framework. The section revisits 

the research objectives, demonstrating how they were met through the development of 

the customized DRL algorithm and its application in the Stock Exchange of Thailand. 

The chapter also highlights the limitations of the current approach, suggesting areas for 

further improvement, such as incorporating fundamental analysis and expanding the 

model to other market environments. Finally, the potential for real-world application of 

DRL strategies in portfolio management is discussed, along with future research 

directions to refine and enhance the methodology. 

To design a robust DRL-based model for dynamic portfolio management, it is 

essential first to understand the current landscape of algorithmic trading methodologies 

and their limitations. Chapter 2 provides a comprehensive review of relevant literature, 

from traditional statistical models to recent advancements in machine learning and 

DRL, setting the stage for this research's novel contributions. 
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CHAPTER 2 

RELATED WORKS 
 

Building on the introduction to DRL in financial markets, in Chapter 2, we 

explore the evolution of algorithmic trading, beginning with traditional stock prediction 

models and advancing deep reinforcement learning (DRL) applications, starting with 

foundational stock prediction models and extending through machine learning and DRL 

techniques, this chapter traces the evolution of automated trading systems (SET, 2024). 

Section 2.1 introduces AI techniques in stock analysis, setting the foundation for DRL’s 

adaptability in complex environments. Section 2.2 reviews econometric models, such 

as ARIMA, followed by deep learning methods like CNN and LSTM in Section 2.3. 

Section 2.4 presents reinforcement learning fundamentals, while Section 2.5 examines 

standard algorithmic trading strategies. We then discuss DRL’s role in automating stock 

trading decisions in Section 2.6, followed by an analysis of advanced DRL algorithms 

in Section 2.7. Lastly, Section 2.8 addresses challenges and future directions, 

highlighting DRL’s potential for further innovation in financial markets. 

2.1 Artificial Intelligence Methodologies in Stock Market Analysis 

The integration of artificial intelligence methodologies illustrated in Figure 2-1, 

with particular emphasis on Deep Reinforcement Learning (DRL) agents, represents a 

paradigm shift in quantitative trading systems. DRL frameworks demonstrate superior 

adaptability in navigating the inherent complexities of financial markets, characterized 

by non-stationary distributions and multifaceted dependencies (Li et al., 2020; Liu et 

al., 2022). Empirical evidence indicates that DRL-based trading strategies consistently 

achieve higher Sharpe ratios and cumulative returns compared to conventional portfolio 

allocation methods, with documented annualized returns of 22.24% against traditional 

benchmarks (Li et al., 2020). This performance differential underscores the efficacy of 

AI-driven approaches in synthesizing complex market signals and executing dynamic 

trading decisions across diverse market regimes. 

 

FIGURE  2-1  AI technique for Stock Analysis 

The hierarchical framework presented illustrates the sophisticated integration of 

artificial intelligence methodologies in stock market analysis, bifurcating into 
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Supervised Learning and Deep Learning paradigms. This taxonomic organization 

demonstrates the systematic application of machine learning algorithms for financial 

market prediction and trading optimization. 

2.1.1 Supervised Learning Framework 

2.1.1.1 Ensemble Learning Architectures leverage the power of multiple 

learning algorithms to enhance predictive accuracy. The Random Forest algorithm 

implements a bootstrap aggregating approach, constructing multiple decision trees to 

generate robust predictions for stock movement patterns. Complementing this, 

AdaBoost employs an iterative boosting mechanism, systematically adjusting weights 

on misclassified instances to optimize predictive performance. 

2.1.1.2 Support Vector Machine Implementation employs kernel-based 

optimization to construct optimal hyperplanes in high-dimensional feature spaces. This 

mathematical foundation enables precise classification of stock price trajectories 

through nonlinear mapping of market indicators. 

2.1.2 Time Series Analytics 

The ARIMA methodology provides a rigorous statistical framework for 

analyzing temporal dependencies in stock price movements. This approach 

incorporates autoregressive components and moving averages to model complex 

market dynamics and seasonal patterns. 

2.1.3 Deep Learning Architecture 

2.1.3.1 Reinforcement Learning Paradigm implements a Markov 

Decision Process to optimize trading strategies through interaction with market 

environments. This approach enables the development of adaptive trading agents that 

optimize decision policies based on historical market states and reward signals. 

2.1.3.2 Recurrent Neural Network Implementation The architecture 

incorporates two sophisticated RNN variants. 
a) GRU (Gated Recurrent Unit): Implements an efficient gating 

mechanism for processing sequential market data. 

b) LSTM (Long Short-Term Memory): Employs advanced 

memory cells to capture long-term dependencies in financial time series. 

2.1.4 Methodological Integration 

This comprehensive framework facilitates the synthesis of multiple analytical 

approaches, enabling researchers and practitioners to implement hybrid strategies that 

leverage the complementary strengths of different algorithmic paradigms. The 

integration of supervised and deep learning methodologies provides a robust foundation 

for developing sophisticated trading systems that can adapt to dynamic market 

conditions. 

The systematic organization of these methodologies demonstrates the evolution 

from traditional statistical approaches to advanced neural architectures, reflecting the 

increasing sophistication of quantitative finance and algorithmic trading strategies. 

2.2 Stocks prediction 

stock price movements based on historical data, market conditions, and other 

external factors. The ability to predict stock prices accurately is crucial for investors, as 

it directly influences buy, sell, hold decisions, ultimately determining the profitability 

of a portfolio. Over the years, numerous methods have been developed for stock 

prediction, ranging from traditional statistical models to advanced machine learning 
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and reinforcement learning algorithms. Each approach has its advantages and 

limitations, with varying degrees of success in different market conditions. 

Prediction is a key area of research in the financial domain, aimed at forecasting 

future stock price movements based on historical data, market conditions, and other 

external factors. The ability to predict stock prices accurately is crucial for investors, as 

it directly influences buy, sell, hold decisions, ultimately determining the profitability 

of a portfolio. Over the years, numerous methods have been developed for stock 

prediction, ranging from traditional statistical models to advanced machine learning 

and reinforcement learning algorithms. Each approach has its advantages and 

limitations, with varying degrees of success in different market conditions. 

Similarly to frequent global difficulties of the economy with the depreciation of 

the national currency and the existence of the non-performing stock market in many 

countries around the world, the rapid change of the price of assets is often named as 

one of the problems (Nassirtoussi et al., 2014). The trends obtained for the asset price 

prediction were quite clearly visible in the initial stages, where more traditional 

econometric models, such as the use of algorithms, were first noticed, and ARIMA and 

GARCH were given the names, respectively (Kara et al., 2011). The baseline models 

of ARIMA are shown in Figure 2-1. By the side of the corresponding patterns, these 

were most inappropriately picked by the people, as the weaker analysis was innovative 

and was the focal point of the attack of the viruses to the hosts. Yet with the worsening 

of the malaise and the necessity of a strong virus as opposed to a weak one, immunity 

was hit, and the old virus was zapped due to the changes which were in the air at that 

time. The key point is that trends in the market that relate to asset prices are usually 

transient and can either come about in times of short durations with the coming and 

going of seasons, which may be periodic or abrupt. Ultimately, they can also remain 

for long periods and change with time, as shown in the biannual studies undertaken 

about stock prices in Vietnam in the recent period (Yadav et al., 2020). 

 

 

FIGURE  2-2  The ARIMA model 

The first one to postulate the Efficient Market Hypothesis (EMH) was that person 

in 1965, using the theory of a short financial market price change pattern. But for 

initiating this theory at the beginning of the project, he uses the random walk model to 

illustrate that the change of the asset price will be random, which results in a different 

model and would be unpredictable. The fact that the theory stuck in the life of the 

discussions promoted soon after different investigations as a continuation with the 

outcomes being that the hypothesis is valid only if there is efficiency; thus, the 

information produced will be asymmetric. The ongoing debate was one in which many 

studies found no strong EMH in many places worldwide, e.g., in Southeast Asian 

countries that never had EMO (Li et al., 2020). An article mapping the effect of the 

news on stock prices was published, which concluded that news could whipsaw stock 
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prices, e.g., a stock group may be affected if they see some common stock. A joint stock 

with a similar buying and selling price on the trading day will be more likely to be 

trained in short-term investments during its term, in this case, the first week in Hong 

Kong. In the short run, a correlational market can be very efficient because of 

independent processes going on if trading occurs where a slight chance is for the market 

to be out of balance. A news standpoint, at least, could only be seen by the market in 

sources like news outlets and social media. 

More than ever, the use of ML and DL has strengthened the stock prediction area. 

They have realized this by detecting non-linear and complex data. During 2010, stocks 

were commonly analyzed through SVM, Random Forest, and Artificial Neural 

Networks (ANNs) algorithms since they can discover stock patterns through the 

processing of massive data (Jordan & Mitchell, 2015; Nelson et al., 2017). However, 

they also need to work on facing problems of overfitting and real-time decision-making. 

Due to this, scientists in this field have been thinking about newer examination 

methods. 

The time after 2010 was the age when many scientists chose to delve into the 

study of RL and DRL, which would make trading systems adaptable to the unstable 

market. These came in the form of a model being fed with its learning experiences with 

the market over time, which resulted in the model being able to adapt its strategies 

through past applications and feedback from the market environment. Traditional 

models that wholly depended on historical data from a single source were the opposite 

of these recent RL and DRL models. These new models could fine-tune decision-

making techniques by using data from real-time markets; hence, they could be more 

precise and profitable in developed and emerging markets (Hu et al., 2018). 

Until 2020, the top solutions were the types of integrated learning that had 

advanced to sentiment analysis and reinforcement learning. Research (Bollen et al., 

2011) on finding the most suitable kind of cancer therapy for patients by considering 

the sentiments received from several datasets, such as company reports, news headlines, 

and text data mining, together with social media, clearly highlights the exponential role 

of bridging ML/DL algorithms with various data sources, which led technology to catch 

up with asynchronous data reporting and social media. 

A year later, the research tried to integrate these models into the decision-making 

process by examining the processing power of the procedure and the model scale. A 

mix of sentiment analysis, technical indicators, and learning models keeps ongoing 

research. At the same time, the focus is increasingly on the application of new sources 

of data and technology (Weng et al., 2018). 

2.3 Deep Learning 

Deep Learning is an advanced subset of machine learning that utilizes artificial 

neural networks with multiple layers to model and interpret intricate patterns within 

large and complex datasets (LeCun et al., 2015). Unlike traditional machine learning 

algorithms, which often rely on manual feature engineering, deep learning 

autonomously discovers hierarchical data representations. This capability facilitates 

processing high-dimensional and unstructured information such as images, audio, and 

text, enabling DL models to excel in tasks that require understanding complex data 

structures and relationships. 
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2.3.1 Foundations of Deep Learning 

At the core of deep learning are ANNs, which are computational models inspired 

by the biological neural networks of the human brain. An ANN consists of layers of 

interconnected neurons, each performing computations through weighted inputs and 

activation functions. The architecture typically includes an input layer that receives the 

initial data, multiple hidden layers that perform feature transformations and 

abstractions, and an output layer that produces the final prediction or classification. 

Each neuron in a layer applies a weighted sum of its inputs followed by a non-linear 

activation function, such as ReLU (Rectified Linear Unit), sigmoid, or tanh, introducing 

non-linearity into the model and enabling the network to capture complex patterns. 

2.3.2 Key Architectures in Deep Learning 

Deep learning encompasses a variety of neural network architectures, each 

tailored to specific types of data and tasks. CNNs are primarily used for spatial data 

analysis, such as image and video recognition. They utilize convolutional layers with 

filters that automatically detect spatial hierarchies and features like edges, textures, and 

shapes, making them highly effective in capturing local patterns while reducing the 

number of parameters through weight sharing and pooling operations. 

Recurrent Neural Networks, including variants like LSTM and Gated Recurrent 

Unit (GRU) networks, are designed for sequential data processing, such as time series 

analysis, natural language processing, and speech recognition. RNNs feature recurrent 

connections that allow information to persist across time steps, enabling the network to 

maintain context and learn long-term dependencies. This is crucial for tasks involving 

temporal dynamics (Hochreiter & Schmidhuber, 1997). 

Autoencoders are primarily used for unsupervised learning tasks such as 

dimensionality reduction, feature learning, and anomaly detection. They consist of an 

encoder that compresses the input into a latent-space representation and a decoder that 

reconstructs the input from it. Variants like denoising autoencoders, variational 

autoencoders (VAEs), and sparse autoencoders enhance specific aspects of the learning 

process, improving robustness and efficiency in feature extraction. 

By offering a fresh method for producing synthetic data, Generative Adversarial 

Networks, or GANs show in Figure 2-3, have completely transformed the field of 

generative modeling. The basic idea is that two neural networks, the discriminator and 

the generator, are always competing. Essentially "fooling" the discriminator, the 

generator aims to generate data that closely mimics real-world data. Conversely, the 

discriminator assesses both produced and real data, becoming increasingly accurate in 

differentiating between the two. Over time, extremely realistic synthetic data is 

produced by the generator because of this adversarial training, which forces iterative 

output improvement from the generator. 
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FIGURE  2-3  Generative Adversarial Networks 

GANs have an impact on many different applications. GANs can produce lifelike 

images of scenes, objects, and even human faces that are not real through image 

synthesis. For sectors like virtual reality and entertainment, this capability is priceless. 

GANs aid in the expansion and diversity of datasets for data augmentation, which is 

especially helpful when data is complex to come by or prohibitively expensive to 

acquire. By applying the stylistic components of one image to another, style transfer 

allows GANs to alter images. For example, it can be used to change a photograph into 

the look of a well-known artwork. In machine learning and artificial intelligence 

research, GANs have opened new vistas, making creating synthetic datasets almost 

identical to real ones easier. 

2.3.3 Training Deep Neural Networks 

Training deep neural networks involves systematically adjusting the network’s 

parameters, including weights and biases, to minimize a loss function quantifying the 

difference between the predicted outputs and targets. This process begins with forward 

propagation, passing input data through each network layer to generate predictions 

based on the current parameter values. The loss function then calculates the prediction 

error, providing a metric for optimization. To reduce this error, backward propagation 

is performed, where gradients of the loss concerning each parameter are computed 

using the chain rule, enabling precise adjustments to the weights and biases. 
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Optimization algorithms such as Stochastic Gradient Descent, Adam, and Root Mean 

Squared Propagation (RMSprop) are employed to update the network’s parameters 

efficiently, ensuring a balance between the speed of convergence and the stability of 

the training process. Additionally, regularization techniques like dropout, L2 

regularization, and batch normalization are applied to prevent overfitting and enhance 

the model’s ability to generalize to new data by reducing complexity and improving 

training dynamics. This comprehensive training framework enables deep neural 

networks to learn complex patterns and make accurate predictions across a wide range 

of applications. 

2.3.4 Advancements Enabling Deep Learning 

The rapid advancement and widespread adoption of deep learning can be 

attributed to several key factors. The increase in computational power, particularly 

using Graphics Processing Units (GPUs) and specialized hardware like Tensor 

Processing Units (TPUs), has significantly accelerated the training of deep neural 

networks, enabling the handling of large-scale models and datasets. The availability of 

large datasets across various domains provides the vast amounts of labeled and 

unlabeled data necessary for training deep learning models effectively. 

Improvements in algorithms and architectures have also played a crucial role. 

Innovations in neural network architectures, optimization techniques, and training 

methodologies have enhanced the performance and scalability of deep learning models, 

allowing them to achieve state-of-the-art results in numerous applications. 

Additionally, the development of open-source frameworks such as TensorFlow, 

PyTorch, and Keras has democratized access to deep learning technologies, facilitating 

research and application development by providing user-friendly tools and extensive 

libraries. 

2.4 The application of Deep Learning 

Machine learning and combinatorial data algorithms for learning analytics in 

technology spaces are all part of the scientific proof. One of the basic ideas is the 

interaction of algorithm diversification and combination and the use of artificial 

intelligence to provide a new type of learning for those where discipline is absent by 

testing with courses. 

The rise of DL models showed a move away from these traditional methods. 

Research revealed that DL models such as LSTM networks convincingly outperformed 

ARIMA and SVM in stock trend prediction. This leap was ascribed to the DL models' 

ability to capture the temporal patterns of financial data and simultaneously handle the 

high-dimensionality properties with the complex dynamics, making them more suitable 

in financial data featuring vibrancy, noise, and non-linearity. 

Deep learning models like LSTM are now utilized primarily in the financial 

industry for stock price prediction. LSTM is a RNN designed to learn data sequences 

over time (Hochreiter & Schmidhuber, 1997). Its characteristic of long-run dependency 

in the time series data allows it to be used both for financial forecasting and long-time 

experience with the data, which is crucial for making accurate predictions. 

An LSTM network maintains a memory cell with lengthy retention times. The 

forget gate, input gate, and output gate are the three primary gates shown in Figure 2-4 

that control the information flow in this memory cell. The forget gate determines which 

data from the memory cell should be erased. It generates values between 0 and 1 by 
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applying a sigmoid function to the current input and the prior hidden state. These 

numbers serve as weights, indicating how easily knowledge is lost. 

The input gate decides what fresh data is added to the memory cell. Additionally, 

a sigmoid function is used to build a filter to determine which input values need 

updating. Furthermore, a tanh function produces a vector of new candidate values that 

could be added to the state. Combining these two functions updates the cell state with 

relevant new information. Lastly, the output gate decides what information from the 

cell state is sent to the next hidden state, ultimately influencing the output. It filters the 

cell state through a sigmoid function and then multiplies it by the tanh of the updated 

cell state to produce the final output. This gating mechanism allows LSTMs to learn 

and remember essential patterns over long sequences, making them ideal for time-

dependent tasks like stock price prediction. 

 

FIGURE  2-4  LSTM model for price prediction 

Besides its potential for processing complex temporal data, DL provides another 

significant advantage. This is the ability to feature automatic extraction. Traditional ML 

models like SVM or decision trees require careful and predefined feature engineering, 

which is a process consisting of the manual selection of those features known to be 

relevant concerning the domain. On the other hand, DL models, especially CNNs and 

LSTM networks, can learn high-level abstract features directly from raw data (LeCun 

et al., 2015; Sülo et al., 2019). The capacity to sidestep the need for manual feature 

engineering has been one of the factors leading to the general acceptance of DL models 

in finance and other relevant domains. 

Recent research has tackled using DL models in more challenging prediction 

tasks in financial markets. A case in point is the study (Avramelou et al., 2023), in 

which univariate and multivariate LSTM and CNN models were set side by side to 

predict the opening price of stocks listed on the Indian stock markets. Thus, the authors 

attested that LSTM was more accurate than CNN when applied to multivariate time 

series, which use several input features, such as volume and price. However, CNN 
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models still perform reasonably, revealing the possibility of using DL architectures 

apart from LSTM. 

Ensemble techniques have also been used in combination with prediction models 

to enhance the modeling accuracy. The authors of the article (Ballings et al., 2015) 

employed ensemble techniques to predict stock market trends, employing numerous 

different models like random forest, SVM, and Adaptive Boosting (AdaBoost). They 

discovered that ensemble models could outperform individual models to some extent 

since they might find different angles to the data, reducing the chances of overfitting or 

prejudice in predictions. In finance, ensemble methods have proved particularly useful 

due to their capacity to amalgamate various insights from diverse data sources due to 

the markets' unpredictable nature. 

The Random Forest ensemble learning technique, shown in Figure 2-5, is applied 

to tasks including regression and classification. During training, it builds many decision 

trees and outputs the average prediction made by each tree. To provide variation among 

the trees, a random selection of characteristics and a random subset of data are used to 

construct each decision tree in the forest. When a model learns the training data too 

well and performs poorly on fresh, unseen data, it is said to be overfitting. This 

randomization helps to reduce overfitting. It is a powerful tool because Random Forest 

can handle big datasets with increased dimensionality and maintain accuracy even when 

a sizable amount of data is missing. The model produces more accurate and dependable 

predictions by averaging biases and reducing volatility by merging the forecasts of 

numerous trees. Because Random Forest can capture intricate interactions among many 

variables impacting stock values, it is conducive in financial modeling. 

 

FIGURE  2-5  Random Forest 

Strong supervised learning models for regression and classification applications 

are support vector machines. SVM's basic idea is to identify the ideal hyperplane in a 

feature space for dividing data points into distinct groups. The margin of the distance 

between the hyperplane and the closest data points from each class, or support vectors, 
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is maximized to determine the location of this hyperplane. SVM seeks to increase the 

model's capacity to generalize to fresh, untested data by optimizing this margin, 

therefore lowering the possibility of misclassification, as shown in Figure 2-6. 

Many real-world scenarios do not allow for a straight line to precisely divide data. 

SVM uses slack variables and soft margins to address this, enabling some data points 

to be incorrectly classified or fall inside the boundary. Using kernel functions to manage 

non-linear interactions in the data is another fundamental idea of SVM. Kernels 

transform the input features into a higher-dimensional space that may contain a linear 

separator. The linear, polynomial, sigmoid, and radial basis function (RBF) kernels are 

examples of common kernel functions. The computation is more efficient because of 

the kernel trick, which enables SVM to carry out this transformation without explicitly 

calculating the coordinates in the higher-dimensional space. SVM can handle a wide 

range of data distributions by selecting the right kernel, which makes it flexible enough 

to capture intricate patterns needed for jobs like stock market prediction. 

 

FIGURE  2-6  The Support Vector Machine 

Adaptive Boosting, shown in Figure 2-7, is an ensemble learning method that 

builds a powerful predictive model by combining several weak learners. A model that 

does only marginally better than random guessing is called a weak learner. AdaBoost 

trains these poor learners stepwise, giving more attention to data instances that earlier 

learners misclassify as they progress. At the beginning, equal weights are assigned to 

each training data point. Each iteration ends with a weight adjustment: instances that 

were incorrectly classified have their weights reduced, and instances that were correctly 

classified have their weights increased. This adaptive weighting procedure contains the 
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principle. AdaBoost encourages second and subsequent learners to focus on these 

difficult scenarios by emphasizing them more. Based on their accuracy, each weak 

learner adds to the final model; learners with higher accuracy significantly impact the 

final forecast. A robust model is produced by adding together all the weak learners, and 

this model frequently outperforms any single learner in terms of accuracy. 

However, AdaBoost may give undue weight to misclassified occurrences that are 

anomalies rather than typical of the underlying data distribution, which makes it 

susceptible to noisy data and outliers. Because of this sensitivity, the data may need to 

be carefully adjusted and occasionally preprocessed to lessen the influence of outliers. 

AdaBoost's capacity to blend distinct weak learners aids in acquiring various market 

signals and patterns in financial modeling. It can enhance the accuracy of stock price 

predictions by utilizing several viewpoints, which makes it an invaluable instrument in 

the ensemble learning toolbox. 

 

FIGURE  2-7  The AdaBoost model with decision trees for price prediction 

Recent advancements in the development of deep reinforcement learning have 

also resulted in new prospects for financial prediction. Unlike traditional supervised 

learning methods fed through labeled data, RL methods are taught through interacting 

with their surroundings and receiving responses as rewards or penalties. DRL is an RL 

method resulting from merging RL with deep neural networks, making it feasible for 

models to acquire complicated decision strategies over time. In trading, for instance, 

DRL has been used to design strategies that adjust to market conditions. For example, 

DRL models can learn asset allocation based on historical market data and reward, 

leading to increased financial return. 

Despite the claim of DL and DRL models, many things could still be improved. 

The biggest one is the availability of high-quality, marked financial data. While large 

datasets are necessary for training DL models, financial data often needs fixing, such 

as noise, missing values, and other inconsistencies. Furthermore, the temporal nature 

of economic data introduces autocorrelation, making model training even more 

difficult. Some studies have addressed these challenges by applying pre-processing 

techniques such as normalization and feature scaling, which help DL models converge 
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faster and perform better (Hu & Lin, 2019). However, further research is essential to 

develop applicable methods for handling noisy, high-dimensional financial data. 

Besides the issues related to data, there is also the problem of interpretability, 

which holds a significant place in applying DL models to finance. DL models, on the 

one hand, successfully capture the various intricate patterns in data. Still, on the other 

hand, they are often criticized for being called "black boxes" because their internal 

decision-making processes are not easily understood. This lack of interpretability may 

hinder, especially in finance, the need of the decision-makers to know how the 

predictions come, and which factors drive specific results. Some researchers 

(Lakshmanarao et al., 2023) point out that interpretable models are crucial in high-

stakes applications like financial forecasting, where errors can lead to substantial 

monetary losses. 

Not long ago, scholars had already commenced the solution of making DL 

learning more transparent and interpretable. For example, attending to the features in a 

dataset, which are needed mainly by attention mechanisms, is now integrated into DL 

models to enable them to make more understandable predictions. Further methods, such 

as Explainable AI (XAI), intend to explain the decision-making process of DL models 

in detail. These new achievements align with the actual scenario in the field because 

professionals should be informed about model interpretability and responsibility when 

dealing with it, without it being just a bonus. 

Another new aspect in the field is the use of hybrid models that mix DL with 

traditional ML models to take advantage of the good aspects of both methods. The use 

of the hybrid models improves stock price prediction with the help of the DL models, 

as they capture complex patterns effortlessly and make it simple for users to read. For 

instance, a hybrid model might be used with an LSTM network to process the old stock 

prices and then a random forest model for final prediction. Such models have been 

found to have a greater success rate than those with classical statistical methods. It was 

observed mainly in cases where the data in question was noisy and non-linear. 

Transfer learning, a technique that allows models to benefit from one task to 

another, has gained momentum in financial ML. This approach is especially relevant in 

finance, where the common features are shared between different markets or assets. 

However, despite these advances, there is still much work to be done in evaluating 

deep learning models in financial forecasting. Many studies use loss metrics such as 

mean squared error (MSE) or root mean squared error (RMSE) as model performance 

benchmarks. These metrics have an adverse influence, as they may not fully represent 

the real-world implications of a model's predictions, particularly in the trading 

environment where transaction costs and risk are relevant. Integrating evaluation 

(Kumar et al., 2023) metrics to the model, such as the Sharpe ratio or maximum 

drawdown, accounts for a trading strategy's risk-adjusted returns. These metrics provide 

a more accurate picture of a model's performance in practical trading scenarios. 

In summary, machine learning has come a very long way in the last ten years. 

This was particularly visible in the financial domain. Traditional models like SVM and 

AdaBoost have been thrown aside in the finance industry, and now the deck is stacked 

with more intricate deep learning frameworks, LSTM and CNN, that can handle 

financial data, which is highly dimensional and packed with noise. The emergence of 

deep reinforcement learning, together with colleagues, has taken financial prediction to 

another height, making time-variant models capable of working with shifting market 
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conditions. Nevertheless, the model's data availability, interpretability, and accuracy 

are still issues to be conquered. Through research that tackles these ways, the vision of 

ML in finance promises to have future applications like automated trading systems, 

portfolio optimization, and more. 

2.5 Fundamentals of Reinforcement Learning 

Rather than restructuring through a decision-making process, a sequential course 

also enables agents to learn a wide range of decision-making processes in situations 

characterized by uncertainty, often financial markets. In reinforcement learning, the 

agent learns the optimal way to approach the environment by getting rewards and 

penalties with time. Thus, this method is an appropriate way of teaching trading as the 

market is a game against an agent, and the agent’s strategy focuses on decisions of when 

to buy and sell or hold the stock depending on market price, volatility, and other 

indicators. The following stages characterize the RL model: the agent (the decision-

maker), the environment (the system the agent interacts with), states (the environment 

representation at different periods), actions (possible movements that the agent can 

choose), and rewards (feedback from the environment). The agent's problem is finding 

a policy π(a∣s) that best maps states to actions and such that the expected average steps 

are more than the most that can be got. This process is formalized via Markov Decision 

Processes (MDPs) Illustrate in Figure 2-8, and these are characterized by states S, 

actions A, transition probabilities P(s′∣s, a), and rewards R(s, a) (Puterman, 2014). 

 

FIGURE  2-8  Illustration of general reinforcement learning 

Rewards derive from value functions in the form of function estimates that 

embody the best outcomes of a given state or decision. The state-value function V(s) 

stands for the expected return that starts from state s, while the action-value function 

Q(s,a) signifies the probable return for taking action a in state s. The Bellman equation 

provides a recursive decomposition of these values: 

 

𝑉(𝑠) = ∑ 𝜋(𝑎|𝑠) ∑ ′𝑃(𝑠′|𝑠, 𝑎)[𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉(𝑠′)]𝑠𝑎            (2-1) 
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where γ is the discount factor that determines how much the agent values future 

rewards. The Bellman equation lays the foundation for many RL algorithms by 

breaking down complex, long-term decisions into simpler subproblems. 

One of the essential methods for updating value estimates in RL is Temporal 

Difference (TD) learning, which updates value functions based on the difference 

between successive estimates of future rewards. This method can be formalized as: 

 

𝑉(𝑠) ← 𝑉(𝑠) + ∞[𝑟 + 𝛾𝑉(𝑠′) − 𝑉(𝑠)]              (2-2) 

 

where α represents the learning rate. TD learning is the basis for more advanced 

algorithms such as Q-learning, an off-policy algorithm that directly learns the optimal 

action-value function Q(s, a)* (Watkins & Dayan, 1992). The Q-learning update rule is 

given by: 

 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + ∞[𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)]            (2-3) 
 
Building upon the foundational principles of Q-Learning, DQN, illustrated in 

Figure 2-9, leverages the power of deep neural networks to effectively approximate the 

optimal action-value function Q∗(s, a) in environments with vast and complex state 

spaces, such as financial markets. Unlike traditional Q-Learning, which relies on a 

discrete table to store Q-values for each state-action pair, DQN employs a convolutional 

neural network (or other suitable architectures) to generalize learning across similar 

states, significantly reducing memory requirements and enhancing scalability. This 

neural approximation allows the agent to discern intricate patterns and relationships 

within high-dimensional financial data, such as price movements, trading volumes, and 

various technical indicators, essential for making informed trading decisions. 

Additionally, DQN incorporates experience replay, a mechanism that stores past 

experiences in a replay buffer and samples mini batches of these experiences randomly 

during training. This approach mitigates the issue of correlated data samples, leading 

to more stable and efficient learning by breaking the temporal dependencies inherent in 

sequential trading data. Furthermore, the introduction of target networks, a separate 

network with periodically updated weights used to compute target Q-values, helps 

prevent harmful feedback loops and reduces the risk of divergence during the training 

process. These innovations collectively enable DQN to learn robust trading strategies 

that can adapt to financial markets' stochastic and non-stationary nature. In practical 

applications, DQN has demonstrated its capability to outperform traditional trading 

algorithms by continuously refining its policy through interactions with the market 

environment, optimizing buying, selling, and holding actions to maximize cumulative 

returns while managing risk. Despite its strengths, implementing DQN in financial 

trading must carefully address challenges such as ensuring sufficient exploration, 

avoiding overfitting historical data, and maintaining computational efficiency to 

operate in real-time trading scenarios. Ongoing research continues to enhance DQN's 

efficacy in trading by integrating advanced techniques like Double DQN, which further 

reduces overestimation bias, and Dueling DQN, which separately estimates state values 

and advantages, thereby improving the agent's ability to prioritize beneficial actions 

under varying market conditions. 
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FIGURE  2-9  DQN with a replay buffer and a target network 

Deep neural networks handle large and complex state spaces. They use 

experience replay, a technique where past transitions (states, actions, rewards, and next 

states) are stored and randomly sampled to train the network. This reduces the 

correlation between consecutive samples, stabilizing the learning process. Additionally, 

target networks are employed in DQN to provide more consistent Q-value targets by 

updating the network's parameters at a slower rate (Mnih et al., 2015). 

Another crucial aspect of RL is the exploration vs exploitation dilemma. 

Essentially, the agent must balance exploration (experimenting with new actions to 

discover rewarding strategies further) and exploitation (capitalizing on the knowledge 

of actions that previously resulted in high rewards). The trade-off situation is 

particularly relevant in stock trading, where market conditions vary. Overutilization 

may lead the agent to a missed opportunity to explore new concepts or strategies, which 

could have brought a more significant increase in the portfolio. Algorithms built 

similarly to reinforcement learning, like scenarios to exploit the error found within the 

datasets to learn and make better estimates. For example, the agent sometimes selects a 

random action (exploration) to leave suboptimal solutions (Serrano, 2022). 

Among all the different trading reinforcement learning technologies, DQN is the 

most basic one, and researchers have come up with additional technologies relying on 

reinforcement learning. The PPO has been considered to equalize the risk of moving 

away from the optimal policy in the update. A2C is the process through which the 

system trains itself to make the most effective decisions by allowing it to select from 

numerous alternatives while remembering the solution to the sample problem.  The 

input avoids the necessity of a graduating student lest it may take much time to provide 

instruction for the output. Then, the associated teacher may have many other procedures 

to do so; that is the issue. 

Despite being highly of the possibilities, RL has found itself in many difficulties, 

mostly encountered when employed in applications like automated trading. An 
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important among these is overfitting, in which the model may perform exceptionally 

well based on historical data but cannot be generalized based on unseen market 

conditions (Moody & Saffell, 2001). Consistency issues within the training phase are 

additional difficulties that the environment probably confronts; a slight change in 

market conditions can lead to the agent’s performance fluctuating from good to bad. 

Moreover, RL often needs long training periods and computational resources, 

especially when the environment has a sparse reward and thus is not fully observable. 

An example of that can be found in a stock trading environment where the ultimate 

reward comes after only one of the possible decisions, in which the agent must try and 

win the most profits. 

Recent advances in RL, including DRL, have addressed some of these obstacles 

through deep learning models designed to approximate the value function and policy 

more efficiently. DRL deployed in algorithmic trading has exhibited a remarkable 

performance, allowing computerized agents to regulate their behaviors in volatile 

market conditions, optimize trading operations, and allocate resources more efficiently. 

The most classic one is AlphaGo, which Google DeepMind created. DRL made a giant 

leap in complex decision-making environments, which resembled one of the cases 

encountered in the financial markets (Silver et al., 2016). 

Rather than simply using neural networks, experience replay, and other 

innovations, RL-based trading systems have moved on to the stage where they meet the 

requirements of solving quantitative issues, such as managing vast amounts of financial 

data, making real-time decisions, and detecting systematic errors. These progressive 

developments are being rolled out to the edge of technological and economic 

possibilities in the trading industry, making RL a key technology for the years ahead. 

2.6 Stock trading 

Their number one concern has always been to predict future returns and quantify 

the risks of their investment strategies, not the accuracy or validity of the predicted 

prices or trends. However, these concerns have been broader risk management over 

time, with returns management alongside the process of moving to the center. Research 

studies in the last year are about how the current financial world is very complex and, 

therefore, is not a matter of trading statistics alone, issued warnings, but risks also (Lei 

et al., 2020). The primary and proficient trading strategy evaluation tools include 

annualized and cumulative returns, the Sharpe ratio, annual volatility, and maximum 

drawdown. 

Annualized returns are gains or income from investments over one year, while 

cumulative returns are the total return acquired during a specific period. These two are 

critical factors in finding the roots of the deficiency of a particular strategy. However, 

contemplating the possible risks and the fact that the strategy is not winnable is also 

extremely important. The Sharpe ratio is a mathematical measure that reflects the 

relationship between risk and reward. It is computed by subtracting the risk-free rate 

from the annual returns and dividing the result by the annual volatility. This means that 

a higher Sharpe ratio is the reward for a lower trade risk. 

Annual volatility, calculated as the standard deviation of the portfolio returns over 

a year, is the third risk measure. Alongside volatility, measured by the R-squared of the 

linear fit of cumulative log returns, the two indicators account for risks and 

performance. Drawdown, which indicates the total percentage loss before partial 
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recovery, and maximum drawdown, which points to the most severe negative impact 

achieved within a given time frame, are two tools the investor uses to evaluate the 

riskiness of the investment strategy. 

Algorithmic trading systems are generally based on a plan that covers the 

following phases: pre-trade analysis, signal generation, trade execution, post-trade 

analysis, risk management, and asset. In the last period, the trend has increasingly 

leaned towards involving artificial intelligence (AI) tools in the system, including ML, 

DL, and RL models. Automating tasks like feature extraction, price prediction, and 

trade execution is an example of the technology. 

The "Buy-and-Hold" (BH) strategy is when there is a specific time duration when 

stocks are bought at first, and they are then held for the duration to understand trading 

models (Dantas & Silva, 2018). BH is a trade that merely demands one buy/hold trade 

to make a fast profit. This downwardly simple approach BH even proved to be the 

heavy benchmark for many REPLNIQX addresses, which could not displace it 

constantly. On the contrary, the new DRL models have demonstrated the potential to 

perform better under good market conditions. 

Two major approaches have been recognized for algorithmic trading: knowledge-

based and data-driven. The knowledge-based strategy uses expert features. In contrast, 

the data-driven strategy, which has become the primary method in recent years, 

employs machine learning to facilitate decision-making. Additional data sets are used 

to enhance forecasts. 

For instance, a trading strategy combined stock prices and sentiment analysis 

using a support vector machine (SVM), thus facilitating decision-making, especially in 

the information technology and retail sectors. Nonetheless, the writers considered deep 

learning models might be more efficient for sentiment analysis and price prediction 

tasks. 

Moreover, newer models, like a hybrid attention network (HAN), have been 

developed to predict stock price trends using news sentiment and price data (Hu et al., 

2018). This model gained an annualized return of 0.611 for a portfolio of 40 stocks, 

leaving the BH strategy far behind, as it returned only 0.04. However, the trading 

strategy needed to be more complex. Therefore, it could be enhanced by incorporating 

reinforcement learning that allows the system to learn from the environment and adapt 

over time. 

The first deep learning applications in the Brazilian stock market trading systems 

used MLP models to predict stock prices and make trades. These developed systems 

have been observed to have a drastic reduction in error (measured by MAPE) and got 

higher returns than the traditional models like moving averages. 

Exchange-traded funds (ETFs) are instruments that transmit the underlying 

indexes or simplify the operation of a pool of stocks by reducing the complexity of the 

overall trading process. They are the most preferred asset class in the world for 

algorithmic trading, though, on an individual level, a trader has the same ability to 

execute a trade. The argument being put forward here is not about being capable of how 

many models a human trader can trade in an algorithm; instead, it is more about which 

model is being used (Johnman et al., 2018). Agencies and institutional ink any other 

regulated business like Stockbrokers, Real Estate Agents, and Auto dealers as these 

persons are licensed personnel authorized to carry or sell the business's products and 

services. Stockbrokers always have IPOs of new stocks, and they are certified by the 
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stock exchange to trade. To trade several stocks, robots usually contribute to complexity 

since the need to verify and monitor multiple is increased. 

Dealing with execution costs and sequencing remains a significant hurdle in 

algorithmic trading. Most transaction cost models take only the volume of a given trade 

as a base point for measuring trading costs and neglect other primary factors like 

intraday price volatility and transparency. The algorithms being developed to execute 

the trade should be fair. This means they should be designed to consume the sparse data 

in a particular fashion and not over-consume it. Consumer finance is another sector that 

is being majorly disrupted by two main trends; in most cases, it's the new virtual 

currency that is responsible for the changes. Credit card companies that withdraw a 

1.75% fee on particular transactions and do not charge the same transaction on others, 

with lower volatility experience, are likely candidates for such pricing models. 

Sequential decision-making models such as the RL and DRL are able to solve this 

problem by allowing systems to learn from their past mistakes and in the future, they 

can optimize their decisions (Dantas & Silva, 2018). 

The latest advancements in RL have paved the way for the deployment of models. 

These models have greatly assisted in dealing with continuous action spaces, which is 

crucial in stock trading. DDPG is a learning technique that makes use of deterministic 

policies, whereas PPO is the methodology that brings about practical solutions. Both 

are considered the most advanced applications for trading strategy optimization in real 

business environments around the world. One example is the Palm device, which can 

act as a modem, and at the same time, users can enjoy the hardware add-on functions. 

Another potential application is the use of cellular telephones as satellite models. For 

stock trading, this is an insight that will hopefully help to change the game. 

To sum up, the evolution of algorithmic trading has not only brought AI models 

to the next level. The synergy of sentiment analysis, reinforcement learning, and more 

advanced ways of dealing with risk and transaction costs have profoundly increased the 

capabilities of these systems, although traditional benchmarks like the BH strategy 

continue to be. 

2.7 Deep Reinforcement Learning for Stock Trading 

Reinforcement Learning and its advanced extension, Deep Reinforcement 

Learning, have become pivotal in the financial industry, particularly in stock trading, 

where the automation of decision-making processes is highly desirable. Traditional ML 

methods in stock trading typically focus on making price or trend predictions, which 

are then implemented into rule-based systems to guide trading actions. However, this 

approach is limited as it often needs to pay more attention to several critical aspects of 

market behavior, such as liquidity and transaction costs. The introduction of DRL 

marks a significant improvement, as it automates decision-making by identifying the 

essential rules that define effective trading strategies in a data-driven way. 

One key advantage of DRL over traditional ML models is its ability to operate 

without predefined rules for executing trades. Instead, DRL models learn optimal 

strategies directly from the data by experimenting with different actions and adjusting 

to new market conditions. This is particularly useful in volatile financial markets, where 

price fluctuations, liquidity issues, and other market conditions evolve rapidly. As a 

result, DRL systems can automate trading by incorporating market predictions and 



 

 

 

23 

 

 

decision-making processes. In contrast, conventional ML systems rely on rule-based 

mechanisms for executing trades. 

Another notable advantage of using DRL for stock trading is its ability to 

optimize reward functions. Unlike traditional models that may focus on maximizing 

returns without considering other factors, DRL models can be designed to include 

essential market aspects such as transaction costs, market liquidity, and risk aversion 

(Fischer & Krauss, 2018). This flexibility allows traders to tailor their reward functions 

to align with their specific trading goals, such as maximizing risk-adjusted returns or 

minimizing drawdowns. In doing so, DRL models offer a holistic approach to trading 

by accounting for the interplay between short-term gains and long-term risks. 

The foundations of RL and DRL lie in their ability to make sequential decisions 

by interacting with an environment. RL models rely on agents interacting with their 

environment, gathering information, and selecting actions to maximize cumulative 

rewards over time. Unlike supervised learning models, RL agents are not trained on 

labeled data but instead learn by trial and error. This approach is well-suited for stock 

trading, where agents must continually update their decisions based on ever-changing 

market conditions. Agents gradually learn which actions yield the best outcomes by 

experimenting with different strategies. 

In RL, several key components must be considered: the agent, the environment, 

the state space, the action space, the reward function, and the policy. The agent interacts 

with the environment, which, in the context of stock trading, represents the financial 

markets. The environment’s dynamics constantly change, with factors such as news 

events, political developments, and economic indicators affecting market behavior. The 

state space represents the agent's possible conditions, such as stock prices, trading 

volumes, and other relevant indicators. The action space refers to the potential actions 

the agent can take, such as buying, selling, or holding a stock (Vázquez-Canteli & 

Nagy, 2019). Each action leads to a new state, and the agent receives a reward based 

on the success of that action in maximizing profit or other objectives. The reward 

function, therefore, plays a critical role in guiding the agent's behavior, as it defines the 

goals the agent is trying to achieve. 

The design of the reward function is crucial in financial markets, where actions 

can have immediate and long-term consequences. For example, an agent might receive 

an immediate reward from a profitable trade but suffer a long-term penalty if that trade 

leads to increased risk or future losses. Thus, DRL models are typically designed to 

optimize short-term and long-term rewards, considering each decision's impact on 

future outcomes. 

The concept of policy is also central to RL models. The policy determines the 

agent's behavior by mapping states to actions. Policies can be deterministic, where the 

agent always takes the same action in each state, or stochastic, where the agent selects 

actions based on a probability distribution. Stochastic policies are often preferred in 

stock trading, allowing the agent to explore different strategies and avoid becoming 

overly reliant on a single approach. Over time, as the agent learns which actions lead to 

the best outcomes, the policy is updated to reflect the agent's improved understanding 

of the environment. 

The evolution of RL into DRL, facilitated using deep neural networks, has 

significantly expanded the capabilities of these models. While traditional RL models 

were limited by their reliance on handcrafted features and small state and action spaces, 
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DRL models can handle much more complex environments, making them particularly 

suitable for financial markets. Deep neural networks enable DRL agents to 

automatically extract relevant features from raw market data, eliminating the need for 

manual feature engineering. This capability is critical in stock trading, where various 

factors influence markets, including historical prices, technical indicators, and 

sentiment data. 

One of the seminal contributions to DRL was the development of the DQN, which 

extended Q-learning to continuous state spaces. DQN introduced several key 

innovations, including experience replay and target networks, which helped stabilize 

the learning process and improved performance in real-world applications (Mnih et al., 

2015). Experience replay allows the agent to store and reuse past experiences, reducing 

the correlation between consecutive updates and making learning more efficient. On 

the other hand, target networks help prevent the agent from overfitting to recent 

experiences by maintaining a separate network that provides more stable estimates of 

the value function. 

DQN has been successfully applied to stock trading, where it has demonstrated 

superior performance compared to traditional strategies such as the buy-and-hold (BH) 

strategy. For example, in experiments conducted on stock market indices like the Hong 

Kong HSI and the U.S. SP500, DQN-based agents outperformed both the BH and RRL 

agents regarding cumulative returns and Sharpe ratios. However, despite its success, 

DQN has limitations. One of the key challenges is that it relies solely on daily closing 

prices, which may only capture some relevant market information. Additionally, DQN 

assumes that actions are discrete, which can be limiting in financial markets where 

actions, such as trade sizes, are often continuous. 

Advantage Actor-Critic is a prominent actor-critic algorithm that enhances policy 

gradient methods by incorporating an advantage function to stabilize and improve 

learning efficiency. In stock trading, A2C is a crucial component in ensemble strategies 

by simultaneously training separate actor and critic networks. Based on the current 

market state, the actor-network is responsible for selecting the optimal trading 

actions—such as buying, selling, or holding a stock. At the same time, the critic 

network evaluates these actions by estimating the advantage function. The advantage 

function measures how much better a chosen action is compared to the average action 

in each state, reducing the variance in policy updates and leading to more reliable and 

robust trading strategies. Figure 2-10 shows the process of the Actor-Critic. 
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FIGURE  2-10  The Actor-Critic Process 

One of the significant strengths of A2C lies in its ability to leverage multiple 

parallel agents that interact with the trading environment independently. Each agent 

explores different parts of the state and action spaces, gathering diverse experiences 

that contribute to the learning process. After a set of interactions, the gradients 

computed by each agent are aggregated and used to update the global actor and critic 

networks. This parallelism not only accelerates the training process but also enhances 

the diversity of the training data, making the model more adaptable to varying market 

conditions. Additionally, by using synchronous updates, A2C ensures that the learning 

process remains stable and efficient, even when dealing with large batches of data 

typical in financial markets. 

The objective function for A2C is: 

 

∇𝐽𝜃(𝜃) =  𝔼[∑ ∇𝜃𝑙𝑜𝑔𝜋𝜃(𝑎𝑡|𝑠𝑡)𝐴(𝑠𝑡|𝑎𝑡)𝑇
𝑡=1 ]              (2-4) 

 

Where 𝜋𝜃(𝑎𝑡|𝑠𝑡) is the policy network, 𝐴(𝑠𝑡|𝑎𝑡) is the advantage function can 

be written as: 

𝐴(𝑠𝑡, 𝑎𝑡) = 𝑄(𝑠𝑡, 𝑎𝑡) − 𝑉(𝑠𝑡)                (2-5) 
 
Or 

 

𝐴(𝑠𝑡, 𝑎𝑡) = 𝑟(𝑠𝑡,  𝑎𝑡, 𝑠𝑡+1) + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡)             (2-6) 

 

In practical applications, A2C has demonstrated its effectiveness in developing 

sophisticated trading strategies that account for both short-term gains and long-term 

risks. By optimizing the reward function to include factors such as transaction costs, 

market liquidity, and risk aversion, A2C enables the creation of trading models that are 

profitable and resilient to market volatility. The actor-critic architecture allows the 

model to continuously refine its policy based on real-time feedback from the market, 
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ensuring that the trading decisions remain aligned with the desired financial objectives. 

This adaptability and robustness make A2C an excellent choice for stock trading, where 

the ability to respond to rapidly changing market dynamics is essential for sustained 

success. 

Recent studies have demonstrated the practical applicability of A2C in stock 

trading environments. For instance, a conceptually simple, lightweight framework for 

deep reinforcement learning (Mnih et al, 2016) uses asynchronous gradient descent to 

optimize deep neural network controllers. Researchers present asynchronous variants 

of four standard reinforcement learning algorithms and show that parallel actor-learners 

stabilize training, allowing all four methods to train neural network controllers 

successfully.    The best-performing method, an asynchronous variant of actor-critic, 

surpasses the current state-of-the-art on the Atari domain while training for half the 

time on a single multi-core Central processing unit (CPU) instead of a GPU. 

Furthermore, the asynchronous actor-critic succeeds on various continuous motor 

control problems and on a new task of navigating random 3D mazes using a visual 

input. 

 

FIGURE  2-11  Illustration of general actor-critic models 

To address the limitations of DQN, researchers developed the DDPG model, 

which extends the Q-learning framework to continuous action spaces. DDPG uses an 

actor-critic architecture, where the actor-network determines the best action to take, and 

the critic network evaluates the quality of that action by estimating the expected return. 

The illustrates the DRL models’ general components, describing specific components 

of the actor-critic methods in Figure 2-11. This approach allows DDPG to handle the 

continuous nature of trading actions, such as varying trade sizes or adjusting portfolio 

allocations. The use of deep neural networks in actor and critic networks enables DDPG 

to learn complex trading strategies previously out of reach for traditional RL models. 
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DDPG has demonstrated superior performance in stock trading applications 

compared to traditional strategies and earlier DRL models. However, it does come with 

certain limitations. One of the main challenges is that DDPG can overfit, especially 

when dealing with noisy or highly volatile markets. To address this, techniques like 

experience replay and target networks are employed. These methods help stabilize the 

learning process, preventing the model from becoming overly reliant on recent 

experiences and making it more robust. 

Building on the strengths of DDPG, PPO, shown in Figure 2-12, was developed, 

which introduced improvements to the actor-critic framework. PPO uses a more stable 

policy gradient approach, ensuring that the policy is updated gradually to avoid drastic 

changes, which can be problematic in volatile market conditions. It also includes a 

surrogate objective function that discourages extensive policy updates, promoting more 

stable exploration and strategy development. This makes PPO particularly suitable for 

financial markets, where sudden shifts in trading strategies can lead to significant risks 

or losses. 

The policy gradient theorem is foundational for algorithms shown in (2-7): 

 

∇𝜃𝐽(𝜃) = Ε[∇𝜃 log 𝜋𝜃 (𝑎/𝑠)𝑄𝜋(𝑠/𝑎)]               (2-7) 

 

where: 

𝜃  are the parameters of the policy 𝜋𝜃(𝑎/𝑠) 

𝐽(𝜃) is the expected reward objective function. 

𝑄𝜋(𝑠, 𝑎) is the action-value function under policy π. 

 

FIGURE  2-12  Illustration of the PPO model 

PPO has been applied successfully in stock trading, demonstrating faster 

convergence and more stable performance than DDPG. In a study on 30 liquid stocks 
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from the Dow Jones Industrial Average, a PPO-based trading system achieved a 

cumulative return of 70.4%, compared to 38.6% for the BH strategy (Yang et al., 2020). 

Additionally, PPO was found to have lower volatility and a higher Sharpe ratio than 

traditional strategies, making it an attractive option for traders looking to balance 

returns with risk. Despite its advantages, PPO still needs help in highly volatile markets, 

where the need for frequent policy updates can limit its effectiveness. 

As DRL models evolve, researchers have begun exploring ensemble methods 

combining multiple agents to create more robust trading systems. Ensemble methods 

leverage the strengths of different DRL models, such as the fast convergence of PPO 

and the ability of DDPG to handle continuous action spaces, to improve overall 

performance. In stock trading, ensemble methods have been shown to enhance 

cumulative returns, reduce volatility, and increase the Sharpe ratio compared to single-

agent systems. Furthermore, ensemble methods can help mitigate the risk of overfitting 

by allowing agents to explore different strategies simultaneously and select the best-

performing ones. 

Another active research area in DRL for stock trading is integrating risk 

management into the reward function. Traditional DRL models often focus solely on 

maximizing returns, but this approach can lead to excessive risk-taking, particularly in 

volatile markets. Researchers have begun incorporating risk-aware objectives, such as 

minimizing drawdowns or maximizing risk-adjusted returns, into the reward function 

to address this. By doing so, DRL agents can learn to balance the trade-off between risk 

and reward, making them more suitable for real-world trading applications where risk 

management is crucial. 

Despite the significant advancements in DRL for stock trading, several challenges 

remain. One of the main issues is the need for more interpretability in DRL models, 

which makes it difficult for human traders to understand and trust the decisions made 

by these agents. This is particularly problematic in financial markets, where 

transparency and accountability are essential. Another challenge is that many DRL 

models are tested in simulated environments, which may not accurately reflect the 

complexities of real-world markets. As a result, DRL agents may perform well in 

simulations but struggle when exposed to live trading conditions. 

To address these challenges, future research should focus on improving the 

interpretability of DRL models and developing more realistic market simulations. 

Additionally, there is a growing need for DRL models that can adapt to changing market 

conditions in real time and incorporate external factors such as news sentiment or 

macroeconomic indicators into their decision-making process. By addressing these 

challenges, DRL can potentially revolutionize stock trading and other areas of finance, 

offering traders more sophisticated and adaptive tools for navigating complex markets. 

In conclusion, the development of RL and DRL for stock trading has made 

significant strides over the years, evolving from early rule-based systems to advanced 

models capable of learning directly from raw market data. While there are still 

challenges to overcome, such as model interpretability and the inclusion of real-world 

factors, the potential benefits of DRL in the financial domain are undeniable. Future 

research should continue exploring the integration of risk management into DRL 

models, the use of ensemble methods, and the development of more realistic market 

simulations to improve the applicability of these models in live trading environments. 
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2.8 Dynamic Allocation 

A key component of investing strategy is asset allocation, which involves 

allocating an investor's capital across several asset classes, such as cash, bonds, and 

stocks, to balance risk and return in accordance with their investment horizon, risk 

tolerance, and financial objectives. The main goal is to attain optimal returns while 

minimizing potential losses from any asset class through diversification of investments. 

Building on this basis, investors can use a customized strategy called Volatility-

Based Allocation. In this investment strategy, investors adjust how much money they 

put into risky assets based on how much the market is fluctuating. When the market is 

calm and not very volatile, investors allocate more funds to risky investments because 

the conditions seem stable and favorable. Conversely, when the market is shaky and 

highly volatile, they reduce their investments in risky assets to minimize potential 

losses. This approach aims to balance the chances of making good returns while 

controlling the risks by responding to changing market conditions. 

A study explored how ANNs, which are advanced computer programs, can 

predict market volatility more accurately. Their goal was to improve an asset allocation 

strategy that maintains a specific level of risk, known as target volatility. The strategy 

works by dynamically shifting investments between a risky asset, like stocks, and a 

risk-free asset, such as cash. One challenge they faced was the limited availability of 

high-volatility data because extreme market swings, like those during financial crises, 

don’t happen often. To overcome this, they compared current high-volatility periods 

with past low-volatility data to have more information for their models. They tested 

their ANN-based approach against traditional methods like the volatility index, 

historical volatility, exponentially weighted moving average (EWMA), and the 

GARCH model. Their results showed that the ANN method performed better in 

forecasting volatility, which helped in making more informed investment decisions. 

They conducted their study using data from the Korea Composite Stock Price Index 

200 (KOSPI 200) and certificate of deposit interest rates from January 2006 to February 

2016 (Kim & Enke, 2016). In this study, the weight of equity in the portfolio is 

calculated by Eq. (2-8), where 𝜎̂𝑡
𝑒𝑞𝑢𝑖𝑡𝑦

is an estimate of the volatility of equity returns, 

and 𝜎
𝑡𝑎𝑟𝑔𝑒𝑡

is the target volatility, applied between time t and the next rebalancing time, 

t + 1. 

 

𝑤𝑡
𝑒𝑞𝑢𝑖𝑡𝑦

= min (
𝜎𝑡𝑎𝑟𝑔𝑒𝑡

𝜎̂𝑡
𝑒𝑞𝑢𝑖𝑡𝑦 , 100%)               (2-8) 

 

Some parameters are needed to implement the target volatility strategy. These 

include the volatility target, the computation of current volatility, the maximum 

leverage amount, and the rebalancing frequency. However, the maximum weight of 

equity is restricted to a constraint (i.e., no leverage) since the objective of this study is 

to use ANNs for volatility forecasting to enhance the ability of an asset allocation 

strategy based on the target volatility. 

Another important study reviewed various ML models used in the financial 

sector, focusing mainly on predicting stock prices and managing portfolios. They found 

that traditional models like ARIMA (Auto Regressive Integrated Moving Average) and 

exponential smoothing didn’t perform as well as DL models when it came to predicting 

stock prices and volatility. This is because financial data is often complex, has high 
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dimensions, and changes dynamically over time. Among the DL models, LSTM 

networks were particularly effective, outperforming other methods like SVM and MLP. 

However, DRL was used less frequently than these models. Conclude that DL models 

offer significant advantages for financial predictions due to their ability to handle 

intricate data patterns. 

These studies highlight the growing importance of using advanced computer 

models, such as neural networks and deep learning, to improve volatility forecasting 

and asset allocation strategies. By better predicting how volatile the market will be, 

investors can make more informed decisions about where to allocate their money, 

aiming to achieve higher returns while managing risks effectively. As technology and 

data analysis techniques advance, these methods will become even more integral to 

successful investment strategies. 

2.9 Economic Analysis 

2.9.1 Return on Investment (ROI) 

ROI is a fundamental financial metric used to evaluate the efficiency or 

profitability of an investment. It measures the return relative to the investment's cost, 

providing a straightforward way to assess the effectiveness of various investments. A 

study discusses ROI's simplicity and versatility, demonstrating its applicability beyond 

traditional financial investments to marketing campaigns, project management, and 

human resources. Their work emphasizes how ROI facilitates decision-making by 

providing a clear metric for comparing the profitability of different initiatives. Over the 

years, enhancements to ROI calculations have been introduced to incorporate the time 

value of money, leading to more sophisticated metrics like Return on Invested Capital 

(ROIC) and Economic Value Added (EVA). These advancements have allowed 

businesses to better understand their investment returns by accounting for factors such 

as capital costs and economic profit. Additionally, the integration of data analytics has 

enabled more dynamic and real-time ROI assessments, allowing for more accurate and 

timely investment evaluations (Brigham & Ehrhardt, 2013). This foundational 

understanding underscores ROI's enduring relevance as a critical strategic planning and 

operational management tool. The ROI is calculated by (2-9): 

 

𝑅𝑂𝐼 =  (
𝑁𝑒𝑡 𝑃𝑟𝑜𝑓𝑖𝑡

𝐶𝑜𝑠𝑡 𝑜𝑓 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡
) × 100%               (2-9) 

 

A higher ROI indicates a more profitable investment, making it a valuable tool 

for comparing investment opportunities. 

2.9.2 Drawdown 

Drawdown is a risk metric that quantifies the decline from a portfolio's peak value 

to its lowest point over a specific period. It provides insight into the potential loss an 

investment might experience, helping investors understand the risk involved. The 

drawdown is calculated using the following equation: 

 

𝐷𝑟𝑎𝑤𝑑𝑜𝑤𝑛 =  (
𝑃𝑒𝑎𝑘 𝑉𝑎𝑙𝑢𝑒−𝑇𝑟𝑜𝑢𝑔ℎ 𝑉𝑎𝑙𝑢𝑒

𝑃𝑒𝑎𝑘 𝑉𝑎𝑙𝑢𝑒
) × 100%           (2-10) 

 

Drawdown (Magdon-Ismail & Atiya, 2004) is crucial for assessing the downside 

risk and the emotional resilience investors require to withstand market volatility. It has 
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been extensively studied as a critical measure of investment risk, particularly in 

portfolio management and behavioral finance. A study integrates drawdown metrics 

into portfolio optimization, highlighting the importance of minimizing potential losses 

to enhance long-term investment stability. Bailey and colleagues demonstrate that by 

incorporating drawdown considerations, investors can develop trading strategies that 

aim for high returns and effectively manage and mitigate significant losses during 

market downturns. Their research underscores drawdown's role in understanding and 

controlling investment risks, thereby improving portfolio resilience. Additionally, 

advancements in computational methods have allowed for more precise drawdown 

analyses, such as calculating maximum and average drawdown over rolling periods. 

This comprehensive approach to drawdown assessment has reinforced its significance 

in constructing robust investment portfolios, ensuring that investors are better prepared 

to handle adverse market conditions. 

While drawdown measures any decline from a portfolio's peak to its trough, 

maximum drawdown focuses on the largest such decline over a specific period. It 

represents the most significant loss an investment could incur, providing critical insight 

into its risk profile. The maximum drawdown is calculated by identifying the most 

considerable drawdown among all peak-to-trough declines during the period: 

 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐷𝑟𝑎𝑤𝑑𝑜𝑤𝑛 = max {(
𝑃𝑒𝑎𝑘 𝑉𝑎𝑙𝑢𝑒−𝑇𝑟𝑜𝑢𝑔ℎ 𝑉𝑎𝑙𝑢𝑒

𝑃𝑒𝑎𝑘 𝑉𝑎𝑙𝑢𝑒
) × 100%}         (2-11) 

 

For instance, if a portfolio experiences several drawdowns 5%, 8%, 15%, and 7% 

over a year, the maximum drawdown is 15%. This figure is crucial for investors as it 

indicates the worst possible loss they might face, enabling them to gauge their risk 

tolerance and adjust their investment strategies accordingly. 

2.9.3 Sharpe Ratio 

The Sharpe Ratio is a widely used measure of risk-adjusted return, developed by 

Nobel laureate William F. Sharpe. It assesses how much excess return an investment 

generates per unit of risk, allowing investors to compare the performance of different 

portfolios or assets. The Sharpe Ratio is calculated using the following equation: 

 

𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 =  
𝑅𝑝− 𝑅𝑓

𝜎𝑝
              (2-12) 

where: 

𝑅𝑝 is the return of the portfolio. 

𝑅𝑓 is the risk-free rate. 

𝜎𝑝 is the standard deviation of the portfolio's excess return. 

 

A higher Sharpe Ratio indicates a more favorable risk-adjusted return, making it 

a crucial tool for portfolio optimization and performance evaluation. In this influential 

work, Sharpe presented the ratio to evaluate the performance of mutual funds by 

comparing their excess returns to the volatility of those returns. This metric became 

essential in the rise of modern portfolio theory and quantitative finance, providing a 

standardized method for assessing risk-adjusted returns across diverse investment 

strategies. Sharpe's analysis demonstrated that the ratio effectively captures the trade-

off between risk and return, enabling investors to make more informed decisions when 

selecting and managing portfolios. Over the decades, the Sharpe Ratio has been 



 

 

 

32 

 

 

extensively validated and refined, addressing its initial limitations and expanding its 

applicability to various asset classes, including equities, bonds, and alternative 

investments like cryptocurrencies and ESG-focused funds (Sharpe, 1966) Its enduring 

relevance is evident in academic research and practical investment management, where 

it continues to guide portfolio optimization and comparative performance analysis. 

2.9.4 Calmar Ratio 

A performance metric that evaluates the return of an investment relative to its 

maximum drawdown, providing insight into the risk-adjusted return over a specified 

period. It is beneficial for assessing the performance of hedge funds and managed 

portfolios. The Calmar Ratio is calculated using the following equation: 

 

𝐶𝑎𝑙𝑚𝑎𝑟 𝑅𝑎𝑡𝑖𝑜 =  
Annualized Return

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐷𝑟𝑎𝑤𝑑𝑜𝑤𝑛
             (2-13) 

where: 

Annualized Return is the compounded annual growth rate of the investment. 

Maximum Drawdown is the largest peak-to-trough decline during the investment 

period. 

A higher Calmar Ratio indicates a more favorable balance between return and 

downside risk, making it a valuable tool for investors focused on capital preservation 

and consistent performance. Some work emphasized the ratio's ability to capture the 

balance between an investment's return and its worst-case scenario loss, making it 

especially relevant during market instability. The Calmar Ratio effectively 

differentiates between high-performing funds with manageable drawdowns and those 

with similar returns but greater risk exposure, providing investors with a clear metric 

for assessing growth and risk (Magdon-Ismail & Atiya, 2004). Research demonstrated 

that incorporating the Calmar Ratio into portfolio evaluation frameworks enhances the 

ability to construct portfolios that maximize returns while minimizing potential losses. 

Additionally, the metric has been widely adopted in evaluating algorithmic trading 

strategies and various asset classes, including equities, commodities, and 

cryptocurrencies, reflecting its versatility in modern investment landscapes. 

Advancements in financial modeling have further improved the accuracy and real-time 

applicability of the Calmar Ratio, reinforcing its role as a vital tool for investors 

prioritizing both growth and the mitigation of significant losses. 

The review of related works reveals a clear opportunity to leverage advanced 

DRL models in portfolio management, particularly within emerging markets such as 

the SET. Chapter 3 introduces the methodology for developing a customized DRL 

trading environment and optimizing agent performance to meet these unique 

challenges. 
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CHAPTER 3 

METHODOLOGY AND EXPERIMENT 
 

Having established the theoretical foundation and identified the research gap, 

Chapter 3 outlines the methodology for developing a deep reinforcement learning 

(DRL) model for dynamic portfolio management on the Stock Exchange of Thailand 

(SET). The chapter begins with an Overview of Model Architecture (Section 3.1), 

outlining the frameworks of Proximal Policy Optimization (PPO), Advantage Actor-

Critic (A2C), and Deep Q-Network (DQN). Data Preparation (Section 3.2) and Data 

Preprocessing (Section 3.3) detail the selection and transformation of stock data, 

followed by Hyperparameter Analysis (Section 3.4), which fine-tunes key parameters 

to enhance model stability. Sections 3.5 and 3.6 cover the Actor-Critic network 

structures and DQN implementation, respectively, explaining the technical foundations 

of each model. Model Training (Section 3.7) describes the learning process of these 

agents. In contrast, Testing and Evaluation (Section 3.8) assesses performance using 

metrics like ROI and Sharpe Ratio, providing insights into the models' profitability and 

risk management capabilities. This methodology framework sets the stage for a robust 

DRL-based trading model tailored to SET’s market conditions. 

3.1 Overview of Model Architecture 

The model architecture for developing a deep reinforcement learning (DRL)-

based trading system, shown in FIGURE 3-1, is designed in three main stages: Data 

Collection, Data Preprocessing, and Deep Reinforcement Learning Model 

Implementation. These stages work together to facilitate the learning and execution of 

trading strategies optimized for profitability and risk management on a selected 

portfolio of stocks in the Stock Exchange of Thailand (SET). 

Stage 1: Data Collection 

In the first stage, a portfolio of 10 representative stocks is selected based on 

market significance, liquidity, and sector diversity criteria. Each stock is represented by 

its historical data, including daily price movements, which provide the foundational 

input for the model. These data points serve as raw inputs, capturing trends, volatility, 

and individual stock behavior, which is essential for building a robust and 

representative dataset. 

Stage 2: Data Preprocessing 

Data preprocessing transforms the raw stock data into formats suitable for 

training the DRL model. This step includes two primary processes: Normalization and 

Feature Engineering. Normalization involves converting price changes into percentage 

changes, making the data comparable across stocks. A Volume-Weighted Average 

Price (VWAP) feature is also calculated to capture short-term price trends and enhance 

the model's understanding of price movements. After feature engineering, a Standard 

Scaler is applied to standardize the dataset, ensuring that features are scaled 

consistently, which is crucial for stable and practical model training. 

Stage 3: Deep Reinforcement Learning Model Implementation 
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The core of the architecture is the DRL model, where Trading Agents interact 

with a simulated environment that mimics the stock market. The trading agents—

implemented using algorithms such as TDQN (Target Deep Q-Network), A2C 

(Advantage Actor-Critic), and PPO (Proximal Policy Optimization)—are responsible 

for making buy, sell, or hold decisions based on the observations from the environment. 

The environment provides real-time data on raw prices, engineered features (like 

VWAP), and close prices and calculates rewards based on profit or loss after each action 

the agent takes. 

 

FIGURE  3-1  Overview of Model Architecture 

Each trading agent operates in a feedback loop with the environment. The agent 

observes the current state, performs an action (e.g., buying or selling a stock), and 

receives a reward based on the outcome of that action. This reward feedback guides the 

agent’s learning, reinforcing profitable strategies while discouraging unprofitable ones. 

Over time, the agents learn to optimize their trading policies through continuous 

interaction with the environment, aiming to maximize cumulative rewards in alignment 

with market conditions. 

This multi-stage architecture, combining data processing with DRL agents, 

allows for an adaptive and data-driven trading approach, leveraging historical trends 

and real-time decision-making capabilities. Through this setup, the model aims to 

produce trading strategies that can dynamically respond to SET’s unique market 

conditions, providing a balance between profitability and risk management. 

This study utilizes a dataset of ten stocks: ADVANC, AOT, BDMS, CPN, 

INTUCH, IVL, MINT, PTTEP, TISCO, and SCC Exploration. These stocks were 

selected due to their significant market presence, high trading volumes, and potential 

for substantial returns. The dataset spans from January 1, 2017, to June 1, 2023, 

providing ample historical data for the Model Overview shown in Figure 3-1. 

3.2 Data Preparation 

The preprocessing step in the methodology involves handling missing values and 

then transforming raw stock data into percentage changes, which is a part of feature 

engineering—selecting a diverse portfolio of stocks spanning several vital economic 

sectors, including Telecommunications, Aviation, Healthcare, Real Estate, Energy/Oil 
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& Gas, Financial Services, Hospitality/Retail, Industrials/Cement, and 

Chemical/Textiles. This strategic diversification across different industries is designed 

to optimize the portfolio’s performance and enhance its robustness. By investing in 

various sectors, the portfolio can better withstand sector-specific downturns, capitalize 

on growth opportunities in multiple areas, and achieve a balanced risk-return profile. 

This approach mitigates risks associated with market volatility and leverages each 

sector's unique strengths and growth potentials, ensuring sustained and stable 

investment growth. 

3.2.1 Advanced Info Service PCL (AIS) 

Listed under the ticker symbol ADVANC, AIS is Thailand's largest mobile phone 

operator. It provides various telecommunications services, including mobile networks, 

broadband internet, and digital solutions. As a leading company in the SET50, AIS 

holds a significant market share in the Thai telecommunications industry, a critical 

sector for the country's economic infrastructure.  

The stock is a critical component of the SET50 index, representing a considerable 

portion of the market capitalization within the telecommunications sector. AIS's 

consistent performance is reflected in its vital financial metrics, including a high market 

capitalization, robust earnings growth, and attractive dividend yield. The company's 

stock is known for its liquidity and is frequently traded by domestic and international 

investors.  

Strategically, AIS is focused on expanding its 5G network and enhancing digital 

services, positioning itself to capitalize on Thailand's growing demand for connectivity. 

With a forward-looking approach, AIS will likely maintain its industry leadership. 

3.2.2 Airports of Thailand PCL (AOT) 

AOT is the foremost airport operator in Thailand, overseeing key international 

airports such as Suvarnabhumi and Don Mueang. AOT plays an indispensable role in 

the Thai economy, particularly within the tourism and transportation sectors, making it 

a pivotal entity in driving the country’s economic activities. The company’s efficient 

airport operations management significantly boosts Thailand’s tourism industry, a 

significant contributor to the national GDP. 

It is a significant constituent of the SET50 index, reflecting its large market 

capitalization and the critical nature of its services. The company's financial 

performance is robust, supported by steady growth in passenger numbers and aircraft 

movements, contributing to its revenue stability. The stock is favored for its defensive 

qualities, offering resilience in market volatility and attracting domestic and foreign 

investors. 

Looking ahead, AOT aims to expand airport infrastructure to accommodate future 

passenger growth. The company's investment plans include upgrading existing 

facilities and enhancing service efficiency, which will help solidify its market position 

and maintain its substantial influence. 

3.2.3 Bangkok Dusit Medical Services PCL (BDMS) 

Thailand's leading healthcare provider operates a network of hospitals and 

medical facilities nationwide. BDMS offers various medical services, including 

specialized treatments, diagnostics, and wellness programs. The company benefits from 

Thailand's growing healthcare demand, driven by local and international patients 

seeking high-quality medical care. BDMS exhibits robust financial performance with 

consistent revenue growth, strong profit margins, and a solid dividend history. The 
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stock is attractive to investors due to the essential nature of healthcare services and the 

company's reputation for excellence. BDMS is focused on expanding its service 

offerings, enhancing patient care technologies, and exploring international markets to 

sustain its growth trajectory. 
3.2.4 Central Pattana PCL (CPN) 

CPN is a leading real estate developer specializing in developing and managing 

retail properties, office buildings, and residential projects. CPN is renowned for its 

high-quality shopping malls, such as CentralWorld and CentralPlaza, major 

commercial hubs attracting millions of visitors annually. The company boasts strong 

financial metrics, including substantial revenue from property sales and rentals, healthy 

profit margins, and consistent dividend payouts. Investors favor CPN's stock for its 

stable income and growth potential driven by Thailand's expanding urbanization and 

consumer spending. The company is committed to sustainable development, innovative 

property solutions, and strategic acquisitions to enhance its portfolio and market 

presence. 

3.2.5 Intouch Holdings PCL (INTUCH) 

A major player in Thailand's telecommunications and digital services landscape. 

The company provides a wide range of services, including mobile communications, 

digital media, and fintech solutions. Intouch has established a strong market presence 

through continuous innovation and strategic partnerships. Financially, the company 

showcases solid revenue growth, healthy profit margins, and a reliable dividend payout, 

making it an attractive option for investors seeking stability and development in the 

tech sector. Intouch is committed to advancing its digital infrastructure and expanding 

its service offerings, positioning itself well to capitalize on Thailand's increasing 

demand for digital transformation. 

3.2.6 Indorama Ventures Ltd (IVL) 

Specializing in the production of polyester, petrochemicals, and related products. 

IVL operates an extensive network of manufacturing facilities and distribution channels 

across multiple continents, making it a significant player in the global textiles and 

chemical industries. The company exhibits financial solid performance with robust 

revenue growth, efficient production processes, and healthy profit margins. IVL's stock 

is attractive to investors due to its global reach, diversified product portfolio, and 

consistent dividend payouts. The company is committed to expanding its production 

capacities, investing in sustainable and environmentally friendly technologies, and 

exploring new markets to drive future growth and maintain its competitive edge. 

3.2.7 Minor International PCL (MINT) 

Operating a diverse portfolio of hotels, resorts, restaurants, and retail stores. 

MINT owns well-known brands such as Minor Hotels, The Pizza Company, and Sushi 

Samba. The company's extensive global presence allows it to tap into international 

markets, driving revenue growth and brand recognition. MINT demonstrates solid 

financial performance with steady revenue streams from its hospitality and retail 

operations, healthy profit margins, and a solid dividend policy. The stock is attractive 

to investors due to the company's resilience and growth potential in the dynamic 

hospitality and consumer sectors. MINT is committed to expanding its global footprint, 

enhancing customer experiences, and diversifying its brand portfolio to capitalize on 

emerging market trends and consumer preferences. 
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3.2.8 PTT Exploration and Production PCL (PTTEP) 

PTTEP is a crucial player in Thailand’s energy sector, specializing in oil and 

natural gas exploration and production. PTTEP's operations are vital for securing 

Thailand’s energy supply, and its activities span both domestic and international 

territories. The company’s contributions are essential to the nation’s energy security 

and economic stability, providing a significant portion of its energy needs. 

It is an essential component of the SET50 index, representing the energy sector's 

substantial contribution to the Thai economy. The company’s financial performance is 

characterized by its strong revenue streams and profitability, supported by successful 

exploration projects and production efficiency. Stock is highly regarded for its steady 

dividends and potential for capital appreciation, making it a preferred choice for 

investors seeking exposure to the energy sector. 

PTTEP is committed to expanding its exploration and production activities, 

particularly in high-potential areas, while investing in sustainability initiatives. The 

company’s focus is on operational efficiency and environmental responsibility 

positions. 

3.2.9 TISCO Financial Group PCL (TISCO) 

A prominent player in Thailand's financial services sector. The company offers 

various financial products and services, including banking, asset management, and 

securities brokerage. TISCO is known for its strong market presence, innovative 

financial solutions, and customer-centric approach. The company exhibits solid 

financial health, consistent revenue growth, strong asset quality, and attractive 

profitability ratios. TISCO's stock is appealing to investors seeking exposure to the 

financial sector, offering both growth potential and dividend income. The company is 

focused on expanding its digital banking services, enhancing customer experience, and 

exploring new financial technologies to stay competitive in a rapidly evolving market. 

3.2.10 Siam Cement Group (SCC) 

It is one of Thailand’s largest and most diversified industrial conglomerates, with 

operations spanning cement production, building materials, chemicals, and packaging. 

SCC plays a critical role in Thailand's infrastructure development and industrial growth. 

The company boasts strong financials, including substantial revenue from its diverse 

business segments, solid profit margins, and consistent dividend payments. Investors 

favor SCC's stock for its stability, diversified revenue streams, and growth prospects 

driven by ongoing infrastructure projects and industrial demand. The company is 

focused on innovation, sustainable practices, and strategic acquisitions to enhance its 

product offerings and expand its domestic and international market presence. 

3.3 Data Preprocessing 

Effective data preprocessing is crucial for the success of machine learning 

models, particularly in the context of financial data, where noise and variability are 

prevalent. This section outlines the comprehensive preprocessing pipeline applied to 

the raw stock data to prepare it for modeling with the RL agent. 

3.3.1 Data Retrieval 

The initial step involves acquiring historical stock data using the Yahoo Finance 

API via the yfinance library. For each stock symbol, daily data encompassing the 

following attributes is retrieved: 

Open: The price at which the stock opened at the beginning of the trading day. 
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High: The highest price reached during the trading day. 

Low: The lowest price reached during the trading day. 

Close: The price at which the stock closed at the end of the trading day. 

Volume: The number of shares traded during the trading day. 

3.3.2 Missing Value Handling 

Financial datasets often need more value due to various reasons, such as market 

holidays or data transmission issues. To ensure data integrity and model reliability, 

missing data points are handled through the following approaches: 

Removal of Missing Data: Rows with missing values are dropped to prevent the 

introduction of bias or errors during model training. 

3.3.3 Feature Engineering: 

A key feature engineered in this process is the Volume-Weighted Average Price, 

calculated over a 14-day window to capture short-term price trends. 

Percentage Change Calculation: The raw stock data is transformed into 

percentage changes to normalize the values and focus on relative price movements 

rather than absolute prices. The formula used was: 

 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐶ℎ𝑎𝑛𝑔𝑒 =  (
𝐶𝑙𝑜𝑠𝑒𝑡−𝐶𝑙𝑜𝑠𝑒𝑡−1

𝐶𝑙𝑜𝑠𝑒𝑡−1
) × 100%             (3-1) 

 

 

The result after calculation show in Figure 3-2 

 

FIGURE  3-2  Illustration data after Feature Engineering 

Normalization: The percentage changes are further normalized by dividing by  

the maximum value to standardize the data across different stocks show in Figure 3-3. 
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FIGURE  3-3  Illustration data after Normalization 

After that, the StandardScaler was created and applied to these features using the 

fit transform method. This method calculates each feature's mean and standard 

deviation and scales them to have a mean of zero and a standard deviation of one.        

The scaled features are converted back into a pandas Data Frame, ensuring that the 

original feature names are retained for clarity. The unscaled 'Close_Price' column is 

added to this Data Frame to preserve the actual closing prices for plotting or future 

reference. By standardizing the features, the code ensures that all variables contribute 

equally to the model training process, particularly important for algorithms sensitive to 

input data's scale. This step enhances the performance and convergence speed of the 

machine learning models used later in the pipeline. 

3.3.4 Training and Testing Split 

The preprocessed dataset is divided into training and testing sets to evaluate the 

model's performance and generalization capability. A common practice is employed, 

allocating 70% of the data for training and the remaining 30% for testing. This split 

ensures that the model is trained on a substantial portion of the data while retaining 

enough data to assess its performance in unseen market conditions. 

3.3.5 Data Visualization 

Visualizing the processed data aids in understanding the underlying patterns and 

verifying the effectiveness of preprocessing steps. Specifically, plotting the 

Close_Price for training and testing sets provides insights into price trends and volatility 
shown in Figure 3-4. 
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FIGURE  3-4  Visualizing data split of Advanced Info Service PCL (AIS) 

3.4 Hyperparameter Analysis 

Hyperparameters play a pivotal role in the performance and efficiency of machine 

learning models. Unlike model parameters learned during training, hyperparameters are 

predefined settings that govern the training process. In reinforcement learning, 

particularly with the PPO, A2C, and DQN algorithms, selecting appropriate 

hyperparameters is essential for achieving optimal policy performance, ensuring 

stability during training, and enhancing the agent's ability to generalize across different 

market conditions. This section outlines the hyperparameters considered in this study, 

the strategies employed for their selection, and the rationale behind the chosen 

configurations. 

The PPO and A2C algorithms encompass several hyperparameters that influence 

their behavior and performance. The key hyperparameters examined in this study 

include 

3.4.1 Learning Rate (alpha) 

Determines the step size at each iteration while moving toward a minimum of the 

loss function. It affects how quickly the Actor and Critic networks update their weights. 

A higher learning rate can accelerate training but may lead to instability, while a lower 

rate ensures more stable convergence but may prolong training time. Set at 0.0003, and 

the learning rate dictates the magnitude of updates to the neural network weights during 

training. A moderate learning rate ensures the agent learns efficiently without 

overshooting optimal policy parameters, maintaining stability throughout training. 

3.4.2 Batch Size  

The number of samples processed before the model is updated influences the 

granularity of updates. Smaller batch sizes can lead to more frequent updates and 

potentially faster learning, whereas larger batches provide more stable gradient 

estimates. With a batch size of 64, the agent processes 64 experiences during each 

training iteration. This size balances computational efficiency and the stability of 

gradient estimates, facilitating effective learning without incurring excessive 

computational costs. 

3.4.3 Number of Epochs 

Number of times the entire training dataset is passed through the model during 

training. Determines the extent of learning from each batch of data. More epochs can 

enhance learning but risk overfitting, especially in dynamic environments like financial 

markets. Ten epochs per training cycle allow the agent to iteratively refine its policy 
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and value estimates based on the sampled experiences. This number ensures sufficient 

learning from each batch while preventing overfitting to specific subsets of data. 

3.4.4 Gamma Discount factor (γ) for future rewards 

Balances the importance of immediate versus future rewards. A higher gamma 

emphasizes long-term rewards, which is critical for trading strategies aimed at long-

term profitability. The discount factor is set to 0.99, prioritizing long-term rewards and 

encouraging the agent to develop strategies that yield sustained profitability. 

3.4.5 GAE Lambda (λ) 

The weighting factor for Generalized Advantage Estimation (GAE). Controls the 

bias-variance trade-off in advantage estimation. It affects how much future rewards are 

considered in the advantage calculation. The Generalized Advantage Estimation 

parameter is set to 0.95, balancing the trade-off between bias and variance in the 

advantage calculations. Together, these hyperparameters ensure that the agent 

effectively evaluates the long-term benefits of its actions while maintaining robust 

learning dynamics. 

3.4.6 Policy Clip 

A clipping parameter 0.2 restricts the policy updates within a predefined range, 

preventing drastic changes that could destabilize the learning process. This mechanism 

ensures that the agent's policy evolves smoothly, maintaining consistency and 

reliability in its trading strategies. 

3.4.7 Memory Buffer 

The memory buffer stores up to 2000 transitions, allowing the agent to sample 

diverse experiences and break the correlation between consecutive data points. This 

approach enhances the generalization capabilities of the agent, ensuring that it can adapt 

to varying market conditions without being biased by specific patterns in the training 

data. 

The Deep Q-Network algorithm relies on a different set of hyperparameters 

tailored to value-based learning. The key hyperparameters for DQN in this study 

include: 

3.4.8 Epsilon (ε) 

Epsilon represents the initial exploration rate in the ε-greedy policy employed by 

the DQN agent. This parameter dictates the probability with which the agent will 

choose a random action (exploration) as opposed to selecting the best-known action 

(exploitation) based on its current Q-value estimates. Setting ε to 1.0 at the outset 

ensures that the agent engages in full exploration. This high exploration rate is crucial 

during the initial training phases, allowing the agent to gather a diverse set of 

experiences across the state-action space. By exploring extensively, the agent can 

discover a wide range of potential strategies, which is essential for effective learning in 

complex environments where optimal actions are not immediately apparent. 

3.4.9 Epsilon End 

Epsilon End defines the minimum exploration rate that ε will decay to over the 

course of training. This parameter ensures that the agent retains a residual probability 

of exploration even after extensive training. By setting 0.01, the agent maintains a small 

but non-negligible level of exploration throughout its learning process. This residual 

exploration is vital for preventing the agent from becoming trapped in local optima or 

suboptimal policies. It allows the agent to occasionally explore new actions that may 
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yield better long-term rewards, thereby enhancing the robustness and adaptability of 

the learned policy. 

3.4.10 Memory Size 

Memory Size specifies the maximum number of experiences (transitions) the 

replay buffer can store. The replay buffer is a critical component in DQN, enabling the 

agent to sample past experiences for training. A substantial memory size of 100,000 

transitions ensures that the agent can access a comprehensive and diverse set of 

experiences. This diversity is essential for breaking the temporal correlations between 

consecutive data points, which can otherwise lead to inefficient learning and instability 

in the training process. By maintaining a large and varied replay buffer, the agent can 

generalize better across different states and actions, enhancing its ability to perform 

effectively in diverse and dynamic market conditions. 

3.4.11 Epsilon Decay 

Epsilon Decay determines how the exploration rate ε decreases over time. This 

parameter controls how quickly the agent transitions from exploration to exploitation. 

A gradual decay rate of 1e-5 ensures a smooth and controlled reduction in ε. This slow 

decay allows the agent to continue exploring sufficiently during the early and middle 

stages of training while progressively shifting towards exploitation as it gains more 

experience and refines its policy. Such a controlled decay helps in balancing the 

exploration-exploitation trade-off, enabling the agent to exploit learned strategies 

effectively without prematurely abandoning the exploration of potentially better 

actions. 

3.4.12 Target Network Update Frequency (replace) 

Target Network Update Frequency dictates the number of training steps after 

which the target network is synchronized with the main Q-network. In DQN, a separate 

target network is used to stabilize training by providing consistent Q-value targets. 

Updating the target network every 1,000 steps strike an optimal balance between 

stability and responsiveness. Frequent updates can lead to oscillations and instability in 

Q-value estimates, as the target network rapidly changes in response to the main 

network's updates. Conversely, infrequent updates may slow down the learning process, 

causing the agent to rely on outdated targets. By setting the update frequency to 1000 

steps, the training process benefits from stable and consistent target values, which 

facilitates more reliable convergence of the Q-network while still allowing it to adapt 

to new information at a reasonable pace. 

3.5 Actor and Critic Network 

The reinforcement learning frameworks employed in this study, Proximal Policy 

Optimization (PPO) and Advantage Actor-Critic (A2C), are meticulously designed to 

navigate the high-dimensional state space characteristic of financial markets. PPO is a 

state-of-the-art reinforcement learning algorithm that balances performance and 

computational efficiency, making it well-suited for complex trading environments. This 

section delves into the architecture of the Actor and Critic networks, detailing their 

components and the rationale behind their design choices.:  

3.5.1 Input Layer: 

The state input includes historical stock prices (Open, High, Low, Close), VWAP, 

Close Price, and other features. 

Seven input features represent each step in the environment at each time. 
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3.5.2 Hidden Layers (Actor and Critic): 

The Actor and Critic networks are constructed with two fully connected hidden 

layers, each comprising 256 neurons. These hidden layers utilize the Rectified Linear 

Unit (ReLU) activation function, which introduces non-linearity into the model, 

enabling it to capture complex patterns and dependencies within the financial data. The 

depth and width of the hidden layers provide sufficient capacity to model the intricate 

relationships inherent in stock market dynamics without leading to overfitting. By 

employing ReLU activations, the networks benefit from faster convergence during 

training and mitigate issues such as vanishing gradients, thereby enhancing the overall 

stability and performance of the PPO algorithm in optimizing trading strategies. 

3.5.3 Output Layer (Actor): 

The Actor network concludes with an output layer consisting of n_actions 

neurons, where n_actions represents the number of possible actions the agent can take 

(e.g., Buy, Sell). This output layer employs the Softmax activation function, which 

transforms the raw outputs into a probability distribution over the available actions. By 

generating a probability distribution, the Actor-network facilitates stochastic policy 

updates, allowing the agent to explore various trading actions probabilistically. This 

probabilistic approach promotes exploration, enabling the agent to discover potentially 

profitable strategies that may not be immediately apparent. The Softmax activation 

ensures that the probabilities are normalized and sum to one. It is crucial for the policy 

gradient methods used in PPO to update the policy effectively based on the expected 

rewards. 

3.5.4 Output Layer (Critic): 

In contrast to the Actor-network, the Critic network’s output layer is designed to 

produce a single scalar value, representing the estimated value of the current state. This 

output is achieved through a linear activation function, allowing the Critic to provide 

an unbounded estimate of the expected cumulative reward from the current state 

onward. The Critic network plays a pivotal role in the PPO framework by offering a 

baseline for advantage estimation, essential for reducing the variance of policy gradient 

updates. By accurately estimating the state value, the Critic helps the Actor-network 

discern which actions are genuinely advantageous, guiding the policy updates toward 

actions that maximize long-term profitability while maintaining stability in the learning 

process. 

3.5.5 Integration within PPO and A2C Frameworks 

Both PPO and A2C utilize the Actor and Critic architectures but differ in their 

optimization and training methodologies. 
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3.5.5.1 PPO Framework: employs a clipped surrogate objective to 

ensure that policy updates do not deviate excessively from the current policy, enhancing 

training stability. the Actor and Critic networks are updated simultaneously using 

collected experiences, with the Critic providing value estimates that inform the Actor's 

policy adjustments. 

3.5.5.2 A2C Framework: A2C typically operates synchronously, where 

multiple agents interact with the environment in parallel, and gradients from these 

agents are aggregated to update the networks. it uses advantage estimates (the 

difference between the observed rewards and the Critic's value estimates) to update the 

Actor, encouraging actions that lead to higher-than-expected rewards. 

This architecture corresponds to the Actor and Critic networks, which are 

meticulously architected to function cohesively within the PPO framework and A2C 

framework. With its two hidden layers and Softmax output, the Actor-

network generates a probability distribution over possible trading actions, promoting 

exploration and strategic decision-making. Conversely, the Critic network, comprising 

two hidden layers but with a linear output, provides accurate state value estimations 

that serve as a baseline for advantage calculations. Together, these networks enable the 

PPO algorithm to refine the trading policy iteratively, balancing the pursuit of high 

returns with risk management and ensuring robust performance in dynamic market 

conditions. 

3.6 Deep Q-Network (DQN) Implementation 

The DQN model implemented in this study serves as a foundational 

reinforcement learning algorithm. This section provides a comprehensive overview of 

the DQN architecture, elucidating its core components, including the Replay Buffer, 

Neural Network architecture, and the DQN Agent, along with the rationale behind each 

design choice. 

3.6.1 Replay Buffer 

The Replay Buffer is a critical component in DQN architecture. It facilitates the 

storage and sampling of experiences to stabilize and improve the learning process. 

It maintains a fixed-size memory to store tuples of experiences, each consisting 

of the current state, action taken, reward received, next state, and a terminal flag 

indicating the end of an episode. By employing a circular buffer mechanism, the buffer 

efficiently manages memory usage, overwriting the oldest experiences when the buffer 

is full. The Random Sampling method enables the agent to randomly sample a batch of 

experiences, breaking the temporal correlations between consecutive samples and 

promoting more stable and diverse training data. 
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3.6.2 Deep Q-Network Architecture 

3.6.2.1 Input Layer receives the state representation, which includes 

historical stock prices (Open, High, Low, Close), VWAP, and other relevant features. 

Each state is represented by a vector with a dimensionality corresponding to the number 

of input features. 

3.6.2.2 Hidden Layers The network comprises two fully connected 

(dense) hidden layers, each with 256 neurons. These layers employ the ReLU activation 

function to introduce non-linearity, enabling the network to capture complex patterns 

and relationships within the financial data. The depth and width of the hidden layers 

are chosen to provide sufficient capacity for modeling intricate market dynamics 

without incurring excessive computational costs or risking overfitting. 

3.6.2.3 Action-Value Outputs consist of n_actions neurons, each 

corresponding to the Q-value of a possible action (e.g., buy, sell, hold). A linear 

activation function produces unbounded Q-value estimates, which are essential for 

accurately assessing the expected cumulative rewards of actions. 

3.7 Model Training 

3.7.1 Proximal Policy Optimization  

The PPO model is trained within a trading environment defined by several key 

parameters and constraints. The initial account balance is 2,000 Baht, which the agent 

uses to trade over the simulation period. The agent can invest 10% of its capital per 

trade to limit risk and manage capital allocation. A trading cost rate of 0.001 is applied, 

simulating real-world transaction fees that reduce profitability if not appropriately 

handled. The agent can take a maximum of 2,000 trades throughout the simulation, 

restricting one open position at a time and forcing the agent to carefully decide whether 

to buy, sell, or hold in each step. 

The batch size for training is 64, meaning that the model is updated based on mini 

batches of 64 experiences sampled from the experience replay buffer, which stores the 

last 2000 transitions. This buffer helps break the correlation between consecutive 

experiences and stabilizes learning.  

The agent is trained in over 100 episodes (n_games = 100), each representing a 

complete trading period based on the historical dataset. A termination threshold 

(KILL_THRESH) is set, where the environment ends if the agent’s balance falls below 

40% of the initial account balance, adding a layer of risk management. The agent also 

faces a lag of 20-time steps, simulating a delay in market responses, while the market 

volatility is initialized to 1 and dynamically updated based on observed price 

movements. 

3.7.2 Advantage Actor-Critic 

The A2C (Advantage Actor-Critic) model is trained within the same trading 

environment as the PPO model, adhering to the predefined parameters and constraints 

to simulate realistic trading conditions. The initial account balance is 2,000 Baht, and 

the agent can invest up to 10% of its capital per trade. A trading cost rate of 0.001 is 

applied to each transaction, mimicking real-world fees that can impact profitability if 

not managed effectively. The agent is limited to a maximum of 2,000 trades throughout 

the simulation and is restricted to one open position at a time, necessitating strategic 

decision-making in buying, selling, or holding positions. 
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The agent is trained over 100 episodes (n_games = 100), with each episode 

representing a complete trading period derived from the historical dataset. A 

termination threshold (KILL_THRESH) is set, where the environment concludes if the 

agent's balance falls below 40% of the initial account balance, reinforcing risk 

management practices. The agent experiences a lag of 20-time steps to simulate delays 

in market responses, and the market volatility is initialized to 1, dynamically updating 

based on observed price movements. 

In the A2C training process, learning updates occur every N = 10 steps within an 

episode, meaning the agent updates its neural networks after every ten actions. The 

batch size for training is set to 5, and the agent undergoes ten epochs of learning during 

each update phase. The learning rate (alpha) is initialized at 0.0003, influencing the step 

size during optimization. 

The A2C agent utilizes both an actor-network, which is responsible for 

determining the optimal actions, and a critic network, which evaluates the value of the 

current state. The agent stores experiences, including states, actions, probabilities, 

values, rewards, and done flags, in a memory buffer throughout each episode. This 

memory enables the agent to calculate the GAE for more stable and efficient learning. 

At the end of each episode, the agent performs an additional learning phase to update 

the networks based on the accumulated experiences, refining its policy and value 

estimations. 

3.7.3 The Deep Q-Network 

The model is trained in the same trading environment, maintaining consistency 

in simulation parameters to ensure comparability across different algorithms. The initial 

account balance is 2,000 Baht, with the agent allowed to invest up to 10% of its capital 

per trade. A trading cost rate of 0.001 is implemented, and the agent is limited to a 

maximum of 2,000 trades, holding only one open position at any given time to enforce 

disciplined trading behavior. 

The DQN agent is trained in over 250 episodes (n_games = 250), each 

representing an entire trading period based on historical data. A termination threshold 

(KILL_THRESH) is applied, ending the episode if the agent's balance drops below 40% 

of the initial amount, thus embedding risk management into the training process. The 

agent also encounters a lag of 20-time steps to simulate realistic market response delays, 

with market volatility initialized at one and adjusted dynamically according to price 

fluctuations. 

In the DQN training framework, the agent employs an experienced replay buffer 

with a capacity of 100,000 transitions. This buffer allows the agent to learn from a 

diverse set of past experiences, breaking the correlation between sequential data and 

enhancing learning stability. The batch size for training is set to 64, and the learning 

rate is 0.0003, which dictates the speed at which the agent updates its Q-network. 

The agent begins with an epsilon value of 1.0 for its epsilon-greedy policy, 

promoting exploration of the action space. This epsilon value decays over time (eps_dec 

= 1e-5) to a minimum threshold, gradually shifting the agent's focus from exploration 

to exploitation of learned strategies. The target network is updated every 1,000 steps 

(replace = 1,000) to provide a stable target for Q-value predictions, enhancing the 

convergence of the learning process. 

During training, the agent selects actions based on either exploration or 

exploitation and stores each transition—including the current state, action taken, reward 
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received, next state, and done flag in the replay buffer. The learning process involves 

sampling mini-batches from the replay buffer to update the Q network. The agent 

minimizes the loss between the predicted and target Q-values, calculated using the 

Bellman equation through backpropagation and gradient descent optimization 

techniques. 

3.8 Testing and Evaluation 

The model was tested on a separate, unseen dataset to evaluate its performance in 

a realistic trading environment. The testing phase is the final step in determining how 

well the model generalizes to new market conditions and stock price movements that 

were not part of the training data. The testing period consists of the final 30% of the 

entire dataset, corresponding to the most recent market activity. 

3.8.1 Testing Process 

During testing, the agent made trading decisions based on the stock’s features, 

including Open, High, Low, Close, Volume, and the engineered VWAP. These 

decisions were guided by the learned policy from the training phase but with no further 

updates to the model’s parameters (i.e., no learning occurs during testing). The agent 

aimed to maximize the ROI based on time-series market conditions observed during 

this period. 

The model was initialized for each stock with a starting capital of 2,000 Baht, and 

10% of the capital was allocated per trade. The agent could open only one position at a 

time, either long or short, and was subject to a small trading cost of 0.1% per 

transaction. Throughout the testing period, the agent interacted with the market data 

and executed trades based on its learned strategy. 
For executing trades, models made decisions at each time step using the test data. 

The A2C agent mentions how action probabilities were computed, and actions were 

selected. The DQN agent clarifies how actions were chosen based on Q-values. 

3.8.2 Evaluation 

In the evaluation phase, the trading models' performance was rigorously assessed 

in a realistic trading environment using two primary metrics for each stock: Return on 

Investment (ROI) and additional indicators such as the Sharpe Ratio, Maximum 

Drawdown, Sortino Ratio, and Calmar Ratio. ROI measures the profitability of the 

agent's trading decisions relative to the initial capital, accounting for all executed buy 

and sell actions during the testing period. The supplementary metrics provide insights 

into risk-adjusted returns, volatility, and potential losses, ensuring a comprehensive 

evaluation of the models' robustness and reliability. To contextualize their 

effectiveness, the models' performance was compared with existing literature, 

positioning the findings within the broader field of algorithmic trading research and 

highlighting relative strengths and areas for improvement. 

With the methodology in place, including data preprocessing, environment 

configuration, and model optimization, the DRL agents are now ready for testing in 

simulated trading scenarios. Chapter 4 presents the results of these experiments, 

providing insights into the comparative performance of each model and their practical 

implications for portfolio management in volatile markets. 
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CHAPTER 4 

RESULTS 
 

Chapter 4 presents and analyzes the outcomes of the DRL models introduced in 

the previous chapter, focusing on their effectiveness in managing portfolios within the 

SET. This chapter compares the three algorithms (PPO, A2C, and DQN), using metrics 

such as ROI, Sharpe Ratio, and maximum drawdown to assess performance across 

different market conditions. By evaluating both profitability and risk management, 

explore the strengths and weaknesses of each model, highlighting specific scenarios 

where certain algorithms outperform others. The insights derived from this analysis 

validate the methodology and offer practical implications for DRL-based portfolio 

management in volatile financial environments. 

4.1 Proximal Policy Optimization 

4.1.1 Portfolio result 

To evaluate the effectiveness of the PPO trading agent, the performance across a 

diversified portfolio of ten different stocks. Table 4-1 summarizes the key performance 

metrics for each stock during the testing period. This analysis provides insights into 

how well the agent managed risk and generated returns in various market conditions 

TABLE  4-1  The portfolio (test model) of PPO 

Stock ROI (%) Sharpe Ratio (%) 
Maximum 

Drawdown (%) 

Calmar 

Ratio (%) 

ADVANC 1.47 0.42 -1.82 0.44 

INTUCH 1.80 0.44 -2.68 0.36 

PTTEP 3.21 0.86 -1.63 1.06 

BDMS 1.76 0.73 -1.29 0.74 

MINT 1.91 0.40 -3.88 0.27 

CPN -3.18 -0.73 -5.24 -0.33 

AOT 1.45 0.53 -1.30 0.60 

TISCO 1.01 0.39 -1.84 0.30 

SCC 0.11 0.06 -1.11 0.05 

IVL 5.92 1.27 -1.91 1.67 

Cumulative 

Return 

15.46    

 

Table 4-1 highlights the diverse performance of the PPO trading agent across ten 

different stocks during the testing period. The agent achieved notable success with IVL 

and PTTEP, recording the highest ROIs of 5.92% and 3.21%, respectively, 

accompanied by strong Sharpe and Calmar Ratios, which indicate adequate risk-

adjusted returns and robust risk management. BDMS and MINT also delivered positive 

ROIs of 1.76% and 1.91%, though MINT faced a higher maximum drawdown, 
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suggesting increased risk exposure. In contrast, CPN significantly underperformed with 

a negative ROI of -3.18%, reflecting poor risk-adjusted performance and substantial 

losses. AOT, INTUCH, ADVANC, TISCO, and SCC exhibited modest to low ROIs, 

ranging from 0.11% to 1.80%, which may indicate conservative trading strategies or 

missed profitable opportunities. While the cumulative return across all stocks was 

15.46%, the varying results underscore the agent's strengths in certain stocks like IVL 

and PTTEP, highlighting areas for improvement in managing risk and enhancing 

performance for underperforming stocks such as CPN and SCC. Overall, the PPO agent 

demonstrates potential with selective stocks, but consistency and strategy refinement 

are necessary to optimize its performance across the entire portfolio. 

4.1.2 Agent's Trading Behavior 

To better understand the agent's decision-making process, we plotted the agent's 

trading behavior during the testing period. The charts below show the agent's buy and 

sell signals, along with the stock's price movements. 

Figure 4-1 presents the price trends of ADVANC and INTUCH stocks during 

both testing periods and the agent's buy and sell signals. The agent's trading behavior 

for these telecommunications companies reflects its responsiveness to market 

fluctuations. For ADVANC, the agent capitalized on short-term price movements, 

contributing to a modest ROI of 1.47%. Similarly, for INTUCH, the agent's timely 

trades resulted in a slightly higher ROI of 1.80%. The frequent adjustments in trading 

positions indicate an adaptive strategy to optimize returns in a relatively stable market 

sector. 

 

FIGURE  4-1  The price trend of the ADVANC and INTUCH of PPO 

Figure 4-2 showcases the price trends of PTTEP and BDMS stocks, including the 

agent's buy and sell signals throughout the testing periods. PTTEP, an energy sector 

stock, yielded a significant ROI of 3.21%, suggesting that the agent effectively 

leveraged price volatility in the energy market. The trading signals for PTTEP show 

well-timed entries and exits that maximized gains. For BDMS, a healthcare stock, the 
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agent achieved a positive ROI of 1.76%. The agent's trading decisions for BDMS reflect 
a balance between capturing growth opportunities and managing risk in a defensive sector. 

 

FIGURE  4-2  The price trend of the PTTEP and BDMS of PPO 

Figure 4-3 illustrates the price trends of MINT and CPN stocks and the agent's 

buy and sell signals during the testing periods. MINT, operating in the hospitality 

industry, provided an ROI of 1.91% despite higher market volatility, as indicated by a 

maximum drawdown of -3.88%. The agent's trading behavior for MINT shows attempts 

to exploit short-term uptrends while mitigating losses. In contrast, CPN, a retail 

property development stock, underperformed with a negative ROI of -3.18%. The 

agent's trading signals for CPN reveal challenges in adjusting to adverse market 

conditions, highlighting an area for strategy improvement. 

  

FIGURE  4-3  The price trend of the MINT and CPN of PPO 

Figure 4-4 displays the price trends of AOT and TISCO stocks, accompanied by 

the agent's buy and sell signals during testing periods. The agent secured a modest ROI 
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of 1.45% for AOT, an airport services company, indicating cautious trading in a sector 

sensitive to global travel trends. The trading signals suggest the agent made 

conservative decisions to protect against downside risks. TISCO, a financial services 

firm, yielded an ROI of 1.01%. The agent's trading behavior for TISCO reflects a 

careful approach in a sector often influenced by economic indicators and regulatory 

changes. 

 

FIGURE  4-4  The price trend of the AOT and TISCO of PPO 

Figure 4-5 presents the price trends of SCC and IVL stocks and the agent's buy 

and sell signals during the testing periods. IVL, a chemical production company, 

delivered the highest ROI of 5.92%, demonstrating the agent's proficiency in 

capitalizing on favorable market conditions within the materials sector. The well-timed 

trades for IVL indicate strong market trend identification and execution by the agent. 

Conversely, SCC showed a negligible ROI of 0.11%, suggesting that the agent's 

strategy was less effective for this stock. The trading signals for SCC point to a more 

conservative approach, potentially missing out on profitable opportunities. 
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FIGURE  4-5  The price trend of the SCC and IVL of PPO 

4.2 Advantage Actor-Critic 

4.2.1 Portfolio result 

To comprehensively evaluate the effectiveness of the Advantage Actor-Critic 

trading agent, tested its performance across a diversified portfolio of ten different 

stocks. Table 4-2 summarizes the key performance metrics for each stock during the 

testing period. This detailed analysis provides insights into how well the agent managed 

risk and generated returns under various market conditions. 

TABLE  4-2  The portfolio (test model) of A2C 

Stock ROI (%) Sharpe Ratio (%) 
Maximum 

Drawdown (%) 

Calmar Ratio 

(%) 

ADVANC 0 0 0 0 

INTUCH 1.80 0.44 -2.68 0.36 

PTTEP 2.32 0.47 -3.38 0.37 

BDMS -0.01 -1.04 -0.02 -0.22 

MINT 1.85 0.39 -3.63 0.28 

CPN 3.17 0.72 -1.60 1.07 

AOT 0 0 0 0 

TISCO 0 0 0 0 

SCC 0 0 0 0 

IVL -2.04 -0.38 -4.46 -0.25 

Cumulative 

Return 

7.09    
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Table 4-2 highlights the performance of the A2C trading agent across ten different 

stocks during the testing period. The agent demonstrated varying degrees of success, 

with notable achievements and areas needing improvement. CPN achieved the highest 

ROI of 3.17%, accompanied by a robust Sharpe Ratio of 0.72 and a Calmar Ratio of 

1.07. These figures indicate that the agent generated substantial returns and managed 

risk effectively, resulting in robust risk-adjusted performance. The lower Maximum 

Drawdown of -1.60% suggests that the agent successfully limited losses during 

unfavorable market movements. PTTEP and MINT also performed well. PTTEP 

recorded an ROI of 2.32% with a Sharpe Ratio of 0.47, while MINT had an ROI of 

1.85% and a Sharpe Ratio of 0.39. These Sharpe Ratios suggest moderate risk-adjusted 

returns, indicating that the agent managed to balance risk and reward adequately for 

these stocks. However, their Maximum Drawdowns of -3.38% and -3.63%, 

respectively, imply that there were periods of significant decline, which the agent 

navigated to still achieve positive returns. INTUCH delivered a positive ROI of 1.80% 

with a Sharpe Ratio of 0.44.  

While the ROI reflects a profitable outcome, the moderate Sharpe Ratio indicates 

that there is room for improvement in risk management to enhance risk-adjusted 

returns. Stocks like ADVANC AOT, TISCO, and SCC showed no change in ROI, each 

recording 0%. Their Sharpe Ratios and Calmar Ratios were also 0%, suggesting 

minimal trading activity or that the agent maintained a neutral position throughout the 

testing period. This lack of activity could be due to the agent not identifying profitable 

trading opportunities or choosing to hold positions without executing trades. On the 

downside, BDMS and IVL underperformed. BDMS had a negligible negative ROI of -

0.01%, with a Sharpe Ratio of -1.04 and a Calmar Ratio of -0.22. These negative ratios 

indicate poor risk-adjusted returns and suggest that the agent's strategy did not align 

well with this stock's market behavior. IVL experienced a more significant negative 

ROI of -2.04%, with a Sharpe Ratio of -0.38 and a Calmar Ratio of -0.25, highlighting 

challenges in risk management and loss mitigation for this stock.  

The cumulative return across all stocks was 7.09%, reflecting the overall 

performance of the A2C agent. While this indicates a positive return on the portfolio 

level, the disparities among individual stocks suggest that the agent excelled in certain 

areas but struggled with consistency across the portfolio. The success with stocks like 

CPN, PTTEP, and MINT showcases the agent's potential, whereas the lackluster 

performance with other stocks points to areas where the agent's strategy could be 

refined. 

4.2.2 Agent's Trading Behavior 

Figures 4-6 to 4-9 present the price trends of selected stocks during the testing 

periods, along with the agent's buy and sell signals. These visual representations 

provide deeper insights into the agent's decision-making process and its responsiveness 

to market dynamics. 

Figure 4-6 illustrates the price trends and trading signals for INTUCH and 

PTTEP. The agent's buy and sell decisions corresponded with favorable market 

movements, enabling it to capture gains during upward trends. The timing of these 

trades suggests that the agent effectively identified trading opportunities in these stocks. 
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FIGURE  4-6  The price trend of the INTUCH and PTTEP of A2C 

Figure 4-7 displays the price trends and agent signals for BDMS and CPN. While 

the agent achieved significant success with CPN, reflected in its high ROI and risk-

adjusted metrics, its performance with BDMS was suboptimal. The negative ROI for 

BDMS indicates that the agent's trading signals did not align well with the stock's price 

movements, leading to poor outcomes. 

 

FIGURE  4-7  The price trend of the BDMS and CPN of A2C 
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Figure 4-8 focuses on IVL, where the agent's trading decisions resulted in a 

negative ROI. The buy and sell signals suggest that the agent may have misinterpreted 

market indicators or failed to adapt to this stock's volatility, highlighting a need for 

strategy refinement. 

 

FIGURE  4-8  The price trend of the IVL of A2C 

Figure 4-9 presents the price trends of the other stocks ADVANC, AOT, TISCO, 

and SCC along with the agent's buy and sell signals. The ROI for these stocks remained 

at 0%, indicating that the agent either did not execute any trades or consistently held 

positions without realizing gains or losses. This inactivity might be due to the agent not 

detecting sufficient trading opportunities or choosing to maintain a neutral stance in 

uncertain market conditions. 
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FIGURE  4-9  The price trend of ADVANC, AOT, TISCO, and SCC of A2C 

4.3 Deep Q-Network 

4.3.1 Portfolio result 

To comprehensively evaluate the effectiveness of the DQN trading agent. Table 

4-3 highlights the performance of ten different stocks during the testing period. 

TABLE  4-3  The portfolio (test model) of DQN 

Stock ROI (%) Sharpe Ratio (%) 
Maximum 

Drawdown (%) 

Calmar 

Ratio (%) 

ADVANC 4.14 1.22 -1.45 1.69 

INTUCH -0.68 -0.17 -3.31 -0.12 

PTTEP -0.31 -0.06 -5.45 -0.03 

BDMS 0.08 0.03 -2.39 0.02 

MINT 0.42 0.11 -4.44 0.06 

CPN 2.32 0.59 -2.88 0.48 

AOT 1.12 0.37 -2.01 0.33 

TISCO 3.55 1.53 -0.72 2.91 

SCC -1.28 -0.50 -2.71 -0.28 

IVL 3.43 0.76 -2.17 0.94 

Cumulative 

Return 

12.79    



 

 

 

58 

 

 

The agent demonstrated varying degrees of success, with notable achievements 

and areas needing improvement. This detailed analysis provides insights into how well 

the agent managed risk and generated returns under various market conditions. 

ADVANC achieved the highest ROI of 4.14%, accompanied by a robust Sharpe 

Ratio of 1.22 and a Calmar Ratio of 1.69. These figures indicate that the agent generated 

substantial returns and managed risk effectively, resulting in robust risk-adjusted 

performance. The low Maximum Drawdown of -1.45% suggests effective loss 

limitation during unfavorable market movements. also delivered impressive results, 

recording an ROI of 3.55%, the highest Sharpe Ratio of 1.53, and a Calmar Ratio of 

2.91. The minimal Maximum Drawdown of -0.72% reflects exceptional risk 

management and stability throughout the trading period. IVL showed significant gains 

with an ROI of 3.43%, a Sharpe Ratio of 0.76, and a Calmar Ratio of 0.94. Despite a 

Maximum Drawdown of -2.17%, the agent effectively navigated market fluctuations to 

achieve positive returns. CPN achieved an ROI of 2.32%, with a Sharpe Ratio of 0.59 

and a Calmar Ratio of 0.48. These metrics suggest moderate risk-adjusted returns, 

indicating a balanced approach to risk and a reward for this stock. 

 AOT and MINT also contributed positively to the portfolio. AOT recorded an 

ROI of 1.12% with a Sharpe Ratio of 0.37, while MINT had an ROI of 0.42% and a 

Sharpe Ratio of 0.11. Their Maximum Drawdowns of -2.01% and -4.44%, respectively, 

imply periods of significant decline that the agent managed to overcome for overall 

gains. On the downside, SCC underperformed with a negative ROI of -1.28%, a Sharpe 

Ratio of -0.50, and a Calmar Ratio of -0.28. These negative ratios indicate poor risk-

adjusted returns and suggest that the agent's strategy did not align well with this stock's 

market behavior. INTUCH and PTTEP also recorded negative ROIs of -0.68% and -

0.31%, respectively, with corresponding negative Sharpe and Calmar Ratios, 

highlighting challenges in risk management and loss mitigation for these stocks.  

BDMS (Bangkok Dusit Medical Services PCL) had a negligible positive ROI of 

0.08%, with a Sharpe Ratio of 0.03 and a Calmar Ratio of 0.02, suggesting minimal 

trading activity or limited profitability during the testing period. The cumulative return 

across all stocks was 12.79%, reflecting the overall performance of the DQN agent. 

While this indicates a positive return at the portfolio level, the disparities among 

individual stocks suggest that the agent excelled in certain areas but struggled with 

consistency across the portfolio. The success with stocks like ADVANC, TISCO, and 

IVL showcases the agent's potential, whereas the underperformance with stocks like 

SCC, INTUCH, and PTTEP points to areas where the agent's strategy could be refined. 
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FIGURE  4-10  The price trend of the ADVANC and INTOUCH of DQN 

 

FIGURE  4-11  The price trend of the PTTEP and BDMS of DQN 

Figure 4-11 displays the price trends of PTTEP and BDMS stocks during the 

testing period, accompanied by the agent's buy and sell signals. The agent's trading 

actions for these stocks demonstrate its strategy in navigating market movements. For 

PTTEP, the agent's cautious approach resulted in minimal losses, showing its tendency 

to avoid high-risk scenarios. With BDMS, limited trading signals suggest the agent 

struggled to identify clear market trends, leading to negligible returns. 

Figure 4-12 shows the price trends of MINT and CPN stocks during the testing 

period, along with the agent's buy and sell signals. The agent's decisions for these stocks 

highlight its approach to capitalizing on market trends. The agent effectively leveraged 
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upward trends in CPN, timing its trades to maximize profits. In contrast, trading with 

MINT was more conservative, possibly due to higher market volatility, resulting in 

modest gains. 

 

FIGURE  4-12  The price trend of the MINT and CPN of DQN 

Figure 4-13 illustrates the price trends of AOT and TISCO stocks during the 

testing period, with the agent's buy and sell signals overlaid. The agent's trading 

behavior for these companies reflects its responsiveness to market dynamics. The agent 

demonstrated strong performance with TISCO, making timely trades that led to 

substantial returns and low drawdowns. The agent maintained a steady trading pattern 

for AOT, achieving consistent, albeit smaller, profits. 
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FIGURE  4-13  The price trend of the AOT and TISCO of DQN 

 

FIGURE  4-14  The price trend of the SCC and IVL of DQN 

 

Figure 4-14 presents the price trends of SCC and IVL stocks during the testing 

period, along with the agent's buy and sell signals. The agent's trading actions for these 

stocks showcase its strategy for adapting to market conditions. While the agent 

struggled with SCC, failing to mitigate losses during declining markets, it adapted its 

strategy with IVL to capture gains despite mid-period volatility. 
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It comprehensively evaluated three reinforcement learning trading agents, PPO, 

A2C, and DQN, across a diversified portfolio of ten stocks. To gauge profitability and 

risk management capabilities, each agent was assessed using key performance metrics, 

including ROI, Sharpe Ratio, Maximum Drawdown, and Calmar Ratio. The PPO agent 

achieved a cumulative return of 15.46%, demonstrating notable success with stocks like 

IVL and PTTEP, but faced inconsistencies with underperforming stocks such as CPN. 

The A2C agent attained a cumulative return of 7.09%, showing strengths in stocks like 

CPN but recorded zero ROI in several others, indicating areas for strategy refinement. 

The DQN agent yielded a cumulative return of 12.79%, excelling in stocks like 

ADVANC and TISCO, but encountered challenges with stocks like SCC. Overall, 

while each agent exhibited potential in generating returns and managing risk under 

certain market conditions, the varying performances underscore the necessity for 

improving consistency and optimizing trading strategies across the entire portfolio to 

enhance overall effectiveness. 

The results highlight the strengths and limitations of DRL-based trading 

strategies, offering valuable insights into their adaptability and performance under 

varying market conditions. Considering these findings, Chapter 5 reflects on this 

research's overall contributions, addresses its limitations, and proposes further 

directions for future work to advance DRL in financial markets. 

 



 

 

 

 

 

CHAPTER 5 

CONCLUSION, DISCUSSION, AND FUTURE WORK 
 

This chapter summarizes the key findings of this study, discusses their 

implications in the broader context of financial markets and reinforcement learning, and 

identifies potential directions for future research and practical applications. Through 

this chapter, we provide a reflective assessment of the deep reinforcement learning 

DRL-based trading model developed for the Stock Exchange of Thailand (SET) and 

explore avenues for further refinement and extension of this work. 

5.1 Conclusion 

The thesis presented in this thesis demonstrates the potential of deep 

reinforcement learning (DRL) models to effectively handle the complexities of stock 

trading on the Stock Exchange of Thailand (SET). By implementing three DRL 

algorithms—Target Deep Q-Network (TDQN), Advantage Actor-Critic (A2C), and 

Proximal Policy Optimization (PPO), this study has shown that AI-driven trading 

agents can develop adaptive strategies that maximize returns while managing risk. Key 

conclusions from the research include: 

Performance Comparison: Among the three models, PPO demonstrated superior 

adaptability in the volatile SET environment, achieving higher returns and a favorable 

risk-to-reward ratio. A2C and TDQN also showed promise but needed more 

consistency in handling rapid market fluctuations. 

Data Preprocessing and Feature Engineering: Integrating data normalization 

techniques and engineered features, such as the Volume-Weighted Average Price 

(VWAP), played a critical role in enhancing model performance. These features 

enabled the models to capture market trends better, thus improving decision accuracy. 

Applicability to Emerging Markets: This study emphasizes the effectiveness of 

DRL in emerging markets like SET, where traditional models often need to catch up. 

The DRL model’s capacity for continuous learning and adaptation shows significant 

promise in navigating the unique challenges of emerging financial markets. 

Overall, the study validates the effectiveness of DRL-based trading strategies, 

providing a solid foundation for integrating these models into real-world trading 

systems that require adaptability, robustness, and a balance between profit and risk 

management. 

5.2 Discussion  

This study's findings contribute to a growing body of research on AI-driven 

trading strategies and underscore the advantages of DRL in complex, volatile markets. 

This section discusses the study's findings' implications, limitations, and practical 

deployment considerations in financial markets. 

Advantages of DRL in Financial Trading: DRL offers a flexible framework that 

allows trading agents to learn optimal strategies without the need for predefined rules. 

This adaptability is particularly advantageous in financial markets, where conditions 

constantly change, and traditional rule-based approaches often need help keeping up. 
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The results show that DRL models, particularly PPO, can learn complex trading 

strategies to yield higher returns while managing risk. 

Limitations and Constraints: Despite the promising results, the study also 

encountered limitations that affected the generalizability of the findings. The DRL 

models were trained on historical data, which may not fully represent future market 

conditions. Furthermore, the model's performance may vary based on hyperparameter 

settings and the specific selection of stocks. Additionally, the computational demands 

of DRL training can be a limiting factor in practical applications, as real-time adaptation 

requires substantial processing power. 

Implications for Financial Practitioners: This study's successful implementation 

of DRL suggests that AI-driven models can enhance traditional financial strategies. 

However, deploying DRL models in real trading environments demands careful 

consideration of operational factors, such as data latency, transaction costs, and 

regulatory constraints. Financial practitioners must also consider the interpretability of 

AI models as regulatory bodies increasingly prioritize transparency in automated 

decision-making systems. 

This discussion highlights the transformative potential and the practical 

challenges associated with integrating DRL into stock trading, underscoring the need 

for further research and refinement before full-scale deployment. 

5.3 Future Work 

While this research has made significant strides in applying DRL to stock trading 

in emerging markets, several promising directions remain for future exploration and 

improvement. Expanding upon this foundation could enhance the practical performance 

and theoretical robustness of DRL-based trading models. 

Real-Time Learning and Online Adaptation: Future work could incorporate 

online learning techniques, enabling the model to adapt to incoming market data 

quickly. This could improve the model's responsiveness to sudden market changes and 

enhance its robustness in volatile trading environments. 

Integration of Additional Data Sources: Including alternative data sources, such 

as news sentiment, social media signals, and macroeconomic indicators, could provide 

a richer context for trading decisions. By integrating these external factors, future 

models could achieve a more holistic understanding of market conditions, potentially 

improving prediction accuracy and adaptability. 

Model Interpretability and Explainability: As DRL models are increasingly 

considered for deployment in regulated financial environments, enhancing their 

interpretability becomes crucial. Future studies could explore explainable AI (XAI) 

techniques, such as Shapley values or feature importance analysis, to increase 

transparency in the model’s decision-making process, making it easier for financial 

analysts to understand and trust AI-driven strategies. 

Hybrid Models and Ensemble Techniques: Combining DRL with other machine 

learning methods, such as supervised learning or ensemble techniques, may create 

hybrid models that leverage the strengths of multiple approaches. For example, 

integrating supervised learning for market prediction with DRL for decision-making 

could yield a more robust trading system. 
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Risk Management and Reward Shaping: Future research could focus on refining 

the reward functions to incorporate more sophisticated risk management strategies. By 

shaping the reward structure to account for factors like volatility, maximum drawdown, 

and transaction costs, models can learn trading strategies that are not only profitable 

but also more risk sensitive. 

Application to Different Markets and Asset Classes: Expanding the application 

of DRL models to other markets, such as commodities, bonds, or forex, could provide 

insights into their adaptability across different asset classes. Additionally, applying 

these models to high-frequency trading or multi-asset portfolios could test the 

scalability and flexibility of DRL in diverse trading environments. 

This future work aims to build upon the foundations of the current study, 

addressing its limitations and exploring innovative approaches to enhance DRL-based 

trading models' adaptability, interpretability, and applicability in real-world financial 

markets. 
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APPENDIX A 

 

The code of Proximal Policy Optimization (PPO) model 
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""" 

Below is the complete code for the PPO agent, organized into logical sections for 

clarity in Google Colab. 

requir: 

python 3.10.12 

ta 0.11.0 

create folder: tmp1 

""" 

#!pip install ta  

# Import necessary libraries for data handling and processing 

import pandas as pd 

from pandas_datareader import DataReader 

import ta 

from ta.volume import VolumeWeightedAveragePrice 

import yfinance as yf 

from sklearn.preprocessing import StandardScaler 

 

# Env 

import gym 

from gym import spaces 

import numpy as np 

import random 

import torch 

 

# Pytorch 

import os 

import numpy as np 

import torch as T 

import torch.nn as nn 

import torch.optim as optim 

from torch.distributions import Categorical 

# Outputs 

import matplotlib.pyplot as plt 

 

# 1. Data Preprocessing 

def process_stock(symbol): 

    print(f"Processing stock: {symbol}") 

 

    # Download data 

    df = yf.download(symbol, start='2017-01-01', end='2023-06-01') 

    df.drop('Adj Close', axis=1, inplace=True) 

    print(df) 

 

    # Flatten MultiIndex columns if they exist 

    if isinstance(df.columns, pd.MultiIndex): 

        df.columns = df.columns.get_level_values(0) 
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    print(df.head())  # For debugging 

 

    # Calculate VWAP and preprocess data 

    print('Calculate VWAP') 

 

 

    # Calculate VWAP and preprocess data 

    vwap = VolumeWeightedAveragePrice( 

        high=df['High'],  

        low=df['Low'],  

        close=df['Close'],  

        volume=df['Volume'],  

        window=14,  

        fillna=False 

    ) 

    df['VWAP'] = vwap.volume_weighted_average_price() 

    df.dropna(inplace=True) 

 

    # Select features 

    features = ['Open', 'High', 'Low', 'Close', 'Volume', 'VWAP'] 

    scaler = StandardScaler() 

    scaled_features = scaler.fit_transform(df[features]) 

 

    # Prepare the dataframe 

    df_mod = pd.DataFrame(scaled_features, columns=features) 

    close_price_values = df["Close"].values 

 

    # Assign 'Close_Price' to df_mod 

    df_mod["Close_Price"] = close_price_values  # Potential source of error 

 

    # Reset index 

    df_mod = df_mod.reset_index(drop=True) 

    print(f"df_mod shape after reset_index: {df_mod.shape}") 

 

    # Split data into training and testing sets 

    df_train = df_mod.iloc[:int(len(df_mod) * 0.7)] 

    df_test = df_mod.iloc[int(len(df_mod) * 0.7):] 

 

    # Plot close data 

    plt.rcParams['figure.figsize'] = [15, 5] 

    df_train['Close_Price'].plot(label='Train') 

    df_test['Close_Price'].plot(label='Test') 

    plt.legend() 

    plt.show() 

 

    return df_train, df_test, df, df_mod, scaler  # Return scaler for later use 
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# 2. Environment Definition 

INITIAL_ACCOUNT_BALANCE = 2000 

 

# Structure env 

class StockTradingEnv(gym.Env): 

    """A stock trading environment for OpenAI gym""" 

    metadata = {'render.modes': ['human']} 

 

    def __init__(self, df): 

        super(StockTradingEnv, self).__init__() 

 

        # Generic variables 

        self.df = df 

 

        # Account variables 

        self.available_balance = INITIAL_ACCOUNT_BALANCE 

        self.net_profit = 0 

 

        # Position variables 

        self.num_trades_long = 0 

        self.num_trades_short = 0 

        self.long_short_ratio = 0 

 

        # Current Step 

        self.current_step = 0 

        self.lag = 20 

        self.volatility = 1 

        self.max_steps = len(df) 

 

        # Actions: Long (0), Short (1), Hold (2) 

        self.action_space = spaces.Discrete(3) 

 

        # Observation space 

        self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape=(7,), 

dtype=np.float32) 

 

        # Parameters for dynamic allocation 

        self.max_percent = 0.2  # Maximum 20% allocation 

        self.min_percent = 0.05 # Minimum 5% allocation 

 

    def _calculate_dynamic_allocation(self): 

        """ 

        Calculates dynamic position sizing based on recent volatility. 

        """ 

        recent_volatility = self.df.loc[self.current_step - self.lag:self.current_step, 

"Close_Price"].std() 
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        allocation = self.min_percent + (self.max_percent - self.min_percent) * (1 / (1 + 

recent_volatility)) 

        allocation = np.clip(allocation, self.min_percent, self.max_percent) 

        return allocation 

 

    # Reward function now returns immediate profit or loss 

    def _calculate_reward(self, profit_loss): 

        """ 

        Calculates the immediate reward based on profit or loss. 

        """ 

        return profit_loss 

 

    # Structure observation data 

    def _next_observation(self): 

        """ 

        Retrieves the next observation from the environment. 

        """ 

        item_0_T0 = self.df.loc[self.current_step, "Open"].item() 

        item_1_T0 = self.df.loc[self.current_step, "High"].item() 

        item_2_T0 = self.df.loc[self.current_step, "Low"].item() 

        item_3_T0 = self.df.loc[self.current_step, "Close"].item() 

        item_4_T0 = self.df.loc[self.current_step, "Volume"].item() 

        item_5_T0 = self.df.loc[self.current_step, "VWAP"].item() 

 

        env_4 = 1 if self.long_short_ratio else 0 

        obs = np.array([item_0_T0, item_1_T0, item_2_T0, item_3_T0, item_4_T0, 

item_5_T0, env_4], dtype=np.float32) 

        return obs 

 

    # Update the action handling and reward calculation 

    def _take_action(self, action): 

        """ 

        Executes the given action and updates the environment state. 

        """ 

        current_price = self.df.loc[self.current_step, "Close_Price"].item() 

        next_price = self.df.loc[self.current_step + 1, "Close_Price"].item() 

        next_return = next_price / current_price - 1 

 

        allocation = self._calculate_dynamic_allocation() 

 

        if action == 0:  # Long 

            profit_loss = self.available_balance * allocation * next_return 

            self.available_balance += profit_loss 

            self.net_profit += profit_loss 

            self.num_trades_long += 1 

 

        elif action == 1:  # Short 
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            profit_loss = self.available_balance * allocation * -next_return 

            self.available_balance += profit_loss 

            self.net_profit += profit_loss 

            self.num_trades_short += 1 

 

        elif action == 2:  # Hold 

            # No position taken; no profit or loss 

            profit_loss = 0 

 

        # Calculate reward based on immediate profit or loss 

        self.reward = self._calculate_reward(profit_loss) 

 

        # Update metrics 

        self.long_short_ratio = self.num_trades_long / (self.num_trades_short + 

self.num_trades_long + 1e-5) 

        self.volatility = self.df.loc[self.current_step - self.lag:self.current_step, 

"Close_Price"].std() 

 

    # Execute one time step within the env 

    def step(self, action): 

        """ 

        Executes one time step within the environment. 

        """ 

        self._take_action(action) 

 

        reward = self.reward  # Use the immediate reward calculated in _take_action 

 

        self.current_step += 1 

 

        is_max_step_taken = self.current_step >= self.max_steps - self.lag - 1 

        done = is_max_step_taken 

 

        obs = self._next_observation() 

 

        return obs, reward, done, {} 

 

    # Reset the state of the env to an initial state 

    def reset(self): 

        """ 

        Resets the environment to an initial state. 

        """ 

        self.available_balance = INITIAL_ACCOUNT_BALANCE 

        self.net_profit = 0 

        self.current_step = self.lag 

        self.num_trades_long = 0 

        self.num_trades_short = 0 

        self.long_short_ratio = 0  # Corrected variable name 
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        return self._next_observation() 

 

    # Render the env to the console 

    def render(self, mode='human', close=False): 

        """ 

        Renders the environment. 

        """ 

        pass 

 

# 3. Neural Network Architectures 

# Actor Neural Net 

class ActorNetwork(nn.Module): 

    """ 

    Neural network for the actor in PPO. 

    """ 

    def __init__(self, n_actions, input_dims, alpha,symbol, fc1_dims=256, 

fc2_dims=256, fc3_dims=256, chkpt_dir='/content/tmp1/'): 

        super(ActorNetwork, self).__init__() 

        self.checkpoint_file = os.path.join(chkpt_dir, f'actor_torch_ppo_{symbol}') 

        self.actor = nn.Sequential( 

            nn.Linear(*input_dims, fc1_dims), 

            nn.ReLU(), 

            nn.Linear(fc1_dims, fc2_dims), 

            nn.ReLU(), 

            nn.Linear(fc2_dims, fc3_dims),  # New layer 

            nn.ReLU(), 

            nn.Linear(fc3_dims, n_actions), 

            nn.Softmax(dim=-1) 

        ) 

 

 

        self.optimizer = optim.AdamW(self.parameters(), lr=alpha) 

        self.device = T.device('cuda:0' if T.cuda.is_available() else 'cpu') # GPU if have 

        self.to(self.device) 

 

    def forward(self, state): 

        dist = self.actor(state) 

        dist = Categorical(dist) 

 

        return dist 

 

    def save_checkpoint(self): 

        T.save(self.state_dict(), self.checkpoint_file) 

 

    def load_checkpoint(self): 

        self.load_state_dict(T.load(self.checkpoint_file)) 
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# Critic Neural Net 

class CriticNetwork(nn.Module): 

    """ 

    Neural network for the critic in PPO. 

    """ 

    def __init__(self, input_dims, alpha,symbol, fc1_dims=256, fc2_dims=256, 

chkpt_dir='/content/tmp1/'): 

        super(CriticNetwork, self).__init__() 

        self.checkpoint_file = os.path.join(chkpt_dir, f'critic_torch_ppo_{symbol}') 

        self.critic = nn.Sequential( 

            nn.Linear(*input_dims, fc1_dims), 

            nn.ReLU(), 

            nn.Linear(fc1_dims, fc2_dims), 

            nn.ReLU(), 

            nn.Linear(fc2_dims, 1) 

        ) 

 

        self.optimizer = optim.AdamW(self.parameters(), lr=alpha) 

        self.device = T.device('cuda:0' if T.cuda.is_available() else 'cpu') # GPU if have 

        self.to(self.device) 

 

    def forward(self, state): 

        value = self.critic(state) 

 

        return value 

 

    def save_checkpoint(self): 

        T.save(self.state_dict(), self.checkpoint_file) 

 

    def load_checkpoint(self): 

        self.load_state_dict(T.load(self.checkpoint_file)) 

 

# 4. Agent Definition 

class PPOmemory: 

    """ 

    Memory buffer for storing experiences during training. 

    """ 

    def __init__(self, batch_size): 

        self.states = [] 

        self.probs = [] 

        self.vals = [] 

        self.actions = [] 

        self.rewards = [] 

        self.dones = [] 

 

        self.batch_size = batch_size 
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    def generate_batches(self): 

        n_states = len(self.states) 

        batch_start = np.arange(0, n_states, self.batch_size) 

        indices = np.arange(n_states, dtype=np.int64) 

        np.random.shuffle(indices) 

        batches = [indices[i:i+self.batch_size] for i in batch_start] 

 

        return np.array(self.states),\ 

                np.array(self.actions),\ 

                np.array(self.probs),\ 

                np.array(self.vals),\ 

                np.array(self.rewards),\ 

                np.array(self.dones),\ 

                batches 

 

    def store_memory(self, state, action, probs, vals, reward, done): 

        self.states.append(state) 

        self.actions.append(action) 

        self.probs.append(probs) 

        self.vals.append(vals) 

        self.rewards.append(reward) 

        self.dones.append(done) 

 

    def clear_memory(self): 

        self.states = [] 

        self.probs = [] 

        self.actions = [] 

        self.rewards = [] 

        self.dones = [] 

        self.vals = [] 

 

class Agent: 

  """ 

    PPO Agent that interacts with the environment and learns from experiences. 

    """ 

  def __init__(self, n_actions, input_dims,symbol, gamma=0.99, alpha=0.0003, 

gae_lambda=0.95, policy_clip=0.2, batch_size=64, n_epochs=10): 

      self.gamma = gamma 

      self.policy_clip = policy_clip 

      self.n_epochs = n_epochs 

      self.gae_lambda = gae_lambda 

      self.actor = ActorNetwork(n_actions, input_dims, alpha,symbol) 

      self.critic = CriticNetwork(input_dims, alpha,symbol) 

      self.memory = PPOmemory(batch_size) 

 

  def remember(self, state, action, probs, vals, reward, done): 
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      """ 

        Stores experiences in memory. 

        """ 

      self.memory.store_memory(state, action, probs, vals, reward, done) 

 

  def save_models(self): 

      """ 

        Saves the actor and critic models. 

        """ 

      print('... saving models ...') 

      self.actor.save_checkpoint() 

      self.critic.save_checkpoint() 

 

  def load_models(self): 

      print('... loading models ...') 

      self.actor.load_checkpoint() 

      self.critic.load_checkpoint() 

 

  # Old: Something incorrect 

  def choose_action(self, observation): 

      """ 

        Chooses an action based on the current policy. 

        """ 

      state = T.tensor([observation], dtype=T.float).to(self.actor.device) 

      state = state.flatten(0) # new 

 

      dist = self.actor(state) 

      value = self.critic(state) 

      action = dist.sample() 

 

      probs = T.squeeze(dist.log_prob(action)).item() 

      action = T.squeeze(action).item() 

      value = T.squeeze(value).item() 

 

      return action, probs, value 

 

  def learn(self): 

      """ 

        Updates the actor and critic networks based on collected experiences. 

        """ 

      for _ in range(self.n_epochs): 

        state_arr, action_arr, old_prob_arr, vals_arr, reward_arr,\ 

        dones_arr, batches = self.memory.generate_batches() 

 

        values = vals_arr 

        advantage = np.zeros(len(reward_arr), dtype=np.float32) 
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        for t in range(len(reward_arr)-1): 

          discount = 1 

          a_t = 0 

          for k in range(t, len(reward_arr)-1): 

            a_t += discount*(reward_arr[k] + self.gamma*values[k+1]*(1-

int(dones_arr[k])) - values[k]) 

            discount *= self.gamma*self.gae_lambda 

          advantage[t] = a_t 

        advantage = T.tensor(advantage).to(self.actor.device) 

 

        values = T.tensor(values).to(self.actor.device) 

        for batch in batches: 

          states = T.tensor(state_arr[batch], dtype=T.float).to(self.actor.device) 

          old_probs = T.tensor(old_prob_arr[batch]).to(self.actor.device) 

          actions = T.tensor(action_arr[batch]).to(self.actor.device) 

 

          dist = self.actor(states) 

          critic_value = self.critic(states) 

 

          critic_value = T.squeeze(critic_value) 

 

          new_probs = dist.log_prob(actions) 

          prob_ratio = new_probs.exp() / old_probs.exp() 

 

          weighted_probs = advantage[batch] * prob_ratio 

          weighted_clipped_probs = T.clamp(prob_ratio, 1-self.policy_clip, 

1+self.policy_clip)*advantage[batch] 

 

          actor_loss = -T.min(weighted_probs, weighted_clipped_probs).mean() 

 

          returns = advantage[batch] + values[batch] 

          critic_loss = (returns - critic_value)**2 

          critic_loss = critic_loss.mean() 

 

          total_loss = actor_loss + 0.5*critic_loss 

          self.actor.optimizer.zero_grad() 

          self.critic.optimizer.zero_grad() 

          total_loss.backward() # new 

          self.actor.optimizer.step() 

          self.critic.optimizer.step() 

 

      self.memory.clear_memory() 

 

# 5. Training and Evaluation Functions 

def plot_learning_curve(x, scores, figure_file): 

    """ 

    Plots the learning curve of the agent. 
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    """ 

    running_avg = np.zeros(len(scores)) 

    for i in range(len(running_avg)): 

        running_avg[i] = np.mean(scores[max(0, i-100):(i+1)]) # this can change to 50 

scores 

    plt.plot(x, running_avg) 

    plt.title('Running average of previous 100 scores') 

    plt.savefig(figure_file) 

 

def plot_signals_and_equity(df_res, original_df, symbol): 

    plt.figure(figsize=(15,5)) 

    plt.plot(original_df["Close"], label='Close Price', color='blue') 

    # Plot Actions (Buy/Sell Signals) 

    plt.rcParams["figure.figsize"] = (15, 5) 

    df_res[["Longs"]].plot(color="green") 

    df_res[["Shorts"]].plot(color="red") 

    plt.show() 

 

 

def calculate_roi(df_res, initial_capital): 

    final_equity = df_res["Equity"].iloc[-1] 

    roi = (final_equity / initial_capital - 1) * 100 

    return roi 

 

def calculate_sharpe_ratio(df_res, risk_free_rate=0.0001): 

    daily_returns = df_res["Equity"].pct_change().dropna() 

    excess_returns = daily_returns - risk_free_rate / 252 

    sharpe_ratio = np.mean(excess_returns) / np.std(excess_returns) * np.sqrt(252) 

    return sharpe_ratio 

 

def calculate_max_drawdown(df_res): 

    equity = df_res["Equity"] 

    running_max = equity.cummax() 

    drawdown = (equity - running_max) / running_max 

    max_drawdown = drawdown.min() * 100  # Expressed as a percentage 

    return max_drawdown 

 

def calculate_sortino_ratio(df_res, risk_free_rate=0.0001): 

    daily_returns = df_res["Equity"].pct_change().dropna() 

    excess_returns = daily_returns - risk_free_rate / 252 

    downside_returns = excess_returns[excess_returns < 0] 

    downside_deviation = np.sqrt(np.mean(downside_returns**2)) * np.sqrt(252) 

    if downside_deviation == 0: 

        return np.nan  # Avoid division by zero 

    sortino_ratio = np.mean(excess_returns) / downside_deviation 

    return sortino_ratio 
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def plot_equity_drawdown(df_res, symbol): 

    """ 

    Plots the equity curve and drawdown over time. 

    """ 

    plt.figure(figsize=(13, 8)) 

 

    # Equity Curve 

    plt.subplot(2, 1, 1) 

    plt.plot(df_res["Equity"], label='Equity Curve', color='blue') 

    plt.title(f'Equity Curve for {symbol}') 

    plt.xlabel('Time') 

    plt.ylabel('Equity') 

    plt.legend() 

 

    # Drawdown 

    plt.subplot(2, 1, 2) 

    equity = df_res["Equity"] 

    running_max = equity.cummax() 

    drawdown = (equity - running_max) / running_max 

    plt.plot(drawdown, label='Drawdown', color='red') 

    plt.title('Drawdown') 

    plt.xlabel('Time') 

    plt.ylabel('Drawdown (%)') 

    plt.legend() 

 

    plt.tight_layout() 

    plt.show() 

 

def calculate_metrics(df_res, initial_capital, perc_invest, symbol): 

    # Calculate equity 

    equities = [initial_capital] 

    for i in range(1, len(df_res)): 

        direction = df_res["Longs"].iloc[i-1] if df_res["Longs"].iloc[i-1] >= 0.5 else -

df_res["Shorts"].iloc[i-1] 

        equity = equities[i-1] + equities[i-1] * direction * df_res["Returns"].iloc[i] * 

perc_invest 

        equities.append(equity) 

 

    df_res["Equity"] = equities 

 

    # Calculate Metrics 

    roi = calculate_roi(df_res, initial_capital) 

    sharpe_ratio = calculate_sharpe_ratio(df_res) 

    max_drawdown = calculate_max_drawdown(df_res) 

    sortino_ratio = calculate_sortino_ratio(df_res) 

    # Estimate the number of years from the data 

    total_days = len(df_res) 



 

 

 

86 

 

 
 

 

    years = total_days / 252  # Assuming 252 trading days in a year 

    calmar_ratio = calculate_calmar_ratio(df_res, initial_capital, years) 

    Benchmark_Perc = (df_res["Close_Price"].iloc[-1] / df_res["Close_Price"].iloc[0] - 

1) * 100 

 

    # Print Metrics 

    print(f"=== Metrics for {symbol} ===") 

    print(f"Benchmark Return for {symbol}: {round(Benchmark_Perc, 2)}%") 

    print(f"ROI for {symbol}: {roi:.2f}%") 

    print(f"Sharpe Ratio: {sharpe_ratio:.2f}") 

    print(f"Maximum Drawdown: {max_drawdown:.2f}%") 

    print(f"Sortino Ratio: {sortino_ratio:.2f}") 

    print(f"Calmar Ratio: {calmar_ratio:.2f}") 

    print("=============================\n") 

 

    # Plot Equity and Drawdown 

    plot_equity_drawdown(df_res, symbol) 

 

 

def train_and_test_agent(symbol, df_train, df_test, df_mod, original_df, scaler): 

    # Create the StockTradingEnv using the training data 

    env = StockTradingEnv(df_train) 

 

    # Initialize the agent 

    N = 20 

    batch_size = 5 

    # n_epochs = 3 

    n_epochs = 10 

    alpha = 0.0003 

    agent = Agent(n_actions=env.action_space.n, 

input_dims=env.observation_space.shape, alpha=alpha, n_epochs=n_epochs, 

batch_size=batch_size, symbol=symbol) 

 

     # File to save the model training plot 

    figure_file = f'{symbol}_stock_training.png' 

 

    # Initialize tracking variables for training performance 

    best_score = env.reward_range[0] 

    score_history = [] 

    avg_score = 0 

    n_steps = 0 

 

    print(f"... start training for {symbol} ...") 

 

    # Train the agent 

    """ 
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    The n_games value selected from the learning rate value in the log and improved 

value of the model. 

    recommend: n_games >= 100 

    """ 

    n_games = 100 

    score_history = [] 

    for i in range(n_games): 

        observation = env.reset() 

        done = False 

        score = 0 

        while not done: 

            action, prob, val = agent.choose_action(observation) 

            observation_, reward, done, info = env.step(action) 

            agent.remember(observation, action, prob, val, reward, done) 

            n_steps += 1 

            score += reward 

            if n_steps % N == 0: 

              agent.learn() 

            observation = observation_ 

 

        # Save score history and calculate the average score 

        # if score > -5000 and score < 5000: 

        score_history.append(score) 

        avg_score = np.mean(score_history[-50:])  # Average over the last 50 games 

 

        # Save model if the performance has improved 

        if avg_score > best_score and i > 5: 

            best_score = avg_score 

            agent.save_models() 

 

        print(f"Episode {i} | Score: {score} | Avg Score: {avg_score} | Best Score: 

{best_score}") 

 

 

    # After training, get the model results on test data 

    reporting_df = df_test.copy().reset_index(drop=True) 

 

    # Apply the same scaling to the test data 

    features = ['Open', 'High', 'Low', 'Close', 'Volume', 'VWAP'] 

    scaled_features = scaler.transform(reporting_df[features]) 

    reporting_df[features] = scaled_features 

 

    long_probs = [] 

    short_probs = [] 

 

    for step in range(len(reporting_df)): 

        item_0_T0 = df_mod.loc[step - 0, "Open"].item() 
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        item_1_T0 = df_mod.loc[step - 0, "High"].item() 

        item_2_T0 = df_mod.loc[step - 0, "Low"].item() 

        item_3_T0 = df_mod.loc[step - 0, "Close"].item() 

        item_4_T0 = df_mod.loc[step - 0, "Volume"].item() 

        item_5_T0 = df_mod.loc[step - 0, "VWAP"].item() 

 

        obs = np.array([item_0_T0, item_1_T0, item_2_T0, item_3_T0, item_4_T0, 

item_5_T0, 0.5]) 

 

        state = T.tensor(obs).float() 

        # Load Model 

        n_actions = env.action_space.n 

        input_dims = env.observation_space.shape 

        alpha = 0.0003 

        model = ActorNetwork(n_actions, input_dims, alpha, symbol) 

        model.load_state_dict(T.load(f'/content/tmp1/actor_torch_ppo_{symbol}', 

weights_only=True)) 

        model.eval() 

        dist = model(state) 

        probs = dist.probs.detach().numpy() 

 

        action = np.argmax(probs) 

        long_probs.append(probs[0]) 

        short_probs.append(probs[1]) 

 

    # Add the buy/sell signal to df 

    df_res = reporting_df[["Open", "Close_Price"]].copy() 

    df_res["Returns"] = df_res["Close_Price"].pct_change() 

    df_res["Longs"] = long_probs 

    df_res["Shorts"] = short_probs 

    df_res.loc[df_res["Longs"] >= 0.5, "Action"] = "Buy" 

    df_res.loc[df_res["Longs"] < 0.5, "Action"] = "Sell" 

 

    # Plot Buy/Sell Signals and Equity 

    plot_signals_and_equity(df_res, original_df, symbol) 

 

    # Call calculate_metrics to evaluate the model performance 

    initial_capital = 2000  # e.g., $100,000 

    perc_invest = 0.1  # 10% of capital per trade 

    calculate_metrics(df_res, initial_capital, perc_invest, symbol) 

 

stock_symbols = 

["ADVANC.BK","INTUCH.BK","PTTEP.BK","BDMS.BK","MINT.BK","CPN.BK

","AOT.BK","TISCO.BK","SCC.BK","IVL.BK"] 

for symbol in stock_symbols: 

    df_train, df_test, df, df_mod, scaler = process_stock(symbol) 

    train_and_test_agent(symbol, df_train, df_test, df_mod, df, scaler) 
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APPENDIX B 

 

The code of Advantage Actor Critic (A2C) model 
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""" 

1. Memory Management 

Memory Class (Memory): The A2C agent employs a simpler memory class without 

batch processing. It collects experiences and clears them after each learning update. 

""" 

class Memory: 

    def __init__(self): 

        self.states = [] 

        self.probs = [] 

        self.vals = [] 

        self.actions = [] 

        self.rewards = [] 

        self.dones = [] 

 

""" 

2. Learning Update Mechanism  

No Policy Clipping: A2C does not use policy clipping. The updates are more 

straightforward and occur more frequently. 

""" 

actor_loss = - (new_probs * advantages.detach()).mean() 

critic_loss = F.mse_loss(critic_value, returns) 

total_loss = actor_loss + 0.5 * critic_loss 

 

""" 

 

3. Advantage Calculation 

Temporal Difference (TD) Error: A2C typically uses the TD error for advantage 

estimation, which is simpler and aligns with the actor-critic framework. 

""" 

for i in reversed(range(len(rewards))): 

    if i == len(rewards) - 1: 

        next_value = 0 

    else: 

        next_value = values[i + 1] 

    delta = rewards[i] + self.gamma * next_value * (1 - dones[i]) - values[i] 

    gae = delta + self.gamma * self.gae_lambda * (1 - dones[i]) * gae 

    returns.insert(0, gae + values[i]) 

    advantages.insert(0, gae) 

 

 

 

 

""" 

4. Agent Class Differences 

Simpler Initialization: Does not include policy_clip, reflecting a simpler update 

mechanism. 

""" 
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class Agent: 

    def __init__(self, ..., batch_size=64, ...): 

        # No policy_clip parameter 

 

""" 

5. Neural Network Architecture 

Consistency in Networks: Both PPO and A2C implementations use similar neural 

network architectures for the actor and critic networks. 

""" 

# Actor Network 

class ActorNetwork(nn.Module): 

    def __init__(self, n_actions, input_dims, alpha, symbol, ...): 

        # Network layers 

 

# Critic Network 

class CriticNetwork(nn.Module): 

    def __init__(self, input_dims, alpha, symbol, ...): 

        # Network layers 

 

""" 

6. Hyperparameter Adjustments 

Frequent Updates: May perform updates more frequently (e.g., after every step or 

episode) without batching. 

N = 10 

Immediate Learning: The agent may learn after each episode or after a smaller number 

of steps. 

""" 

 

if n_steps % N == 0: 

    agent.learn() 

    n_steps = 0  # Reset steps after each update 

# Single Update per Learning Call: The agent performs a single update without iterating 

# over multiple epochs. 

 

By focusing on these aspects, we can appreciate how the A2C algorithm balances 

efficiency and simplicity in policy optimization, impacting both the performance and 

practicality of reinforcement learning solutions. 



 

 

 

92 

 

 
 

 

  



 

 

 

93 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX C 

 

The code of Deep Q-Network (DQN) model 
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""" 

1. Value-Based vs. Policy-Based Methods 

Single Network Outputting Q-Values in DQN: 

""" 

class DeepQNetwork(nn.Module): 

    def __init__(self, lr, n_actions, input_dims, ...): 

        # Initialize network layers 

        # ... 

     

    def forward(self, state): 

        # Compute Q-values for all possible actions 

        actions = self.fc3(x) 

        return actions 

 

""" 

2. Experience Replay Buffer 

Replay Buffer (ReplayBuffer Class): Stores transitions (state, action, reward, next state, 

done) to decorrelate data and improve sample efficiency. 

""" 

 

class ReplayBuffer: 

    def __init__(self, max_size, input_shape): 

        self.mem_size = max_size 

        self.mem_cntr = 0 

 

        self.state_memory = np.zeros((self.mem_size, *input_shape), dtype=np.float32) 

        self.new_state_memory = np.zeros((self.mem_size, *input_shape), 

dtype=np.float32) 

        self.action_memory = np.zeros(self.mem_size, dtype=np.int64) 

        self.reward_memory = np.zeros(self.mem_size, dtype=np.float32) 

        self.terminal_memory = np.zeros(self.mem_size, dtype=np.bool_) 

 

    def store_transition(self, state, action, reward, state_, done): 

        index = self.mem_cntr % self.mem_size 

 

        self.state_memory[index] = state 

        self.new_state_memory[index] = state_ 

        self.reward_memory[index] = reward 

        self.action_memory[index] = action 

        self.terminal_memory[index] = done 

 

        self.mem_cntr += 1 

 

    def sample_buffer(self, batch_size): 

        max_mem = min(self.mem_cntr, self.mem_size) 

 

        batch = np.random.choice(max_mem, batch_size, replace=False) 
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        states = self.state_memory[batch] 

        states_ = self.new_state_memory[batch] 

        rewards = self.reward_memory[batch] 

        actions = self.action_memory[batch] 

        dones = self.terminal_memory[batch] 

 

        return states, actions, rewards, states_, dones 

 

""" 

3. Target Network and Network Updates 

Purpose: Stabilizes training by keeping a separate network (q_next) for calculating 

target Q-values, which is updated less frequently. 

""" 

class DQNAgent: 

    def __init__(self, ...): 

        self.q_eval = DeepQNetwork(...) 

        self.q_next = DeepQNetwork(...) 

        # ... 

 

    def replace_target_network(self): 

        if self.learn_step_counter % self.replace_target_cnt == 0: 

            self.q_next.load_state_dict(self.q_eval.state_dict()) 

 

""" 

4. Action Selection Mechanism 

Exploration vs. Exploitation: Balances exploration and exploitation by selecting 

random actions with probability ϵ and the best action according to the Q-network 

otherwise. 

""" 

class DQNAgent: 

    def choose_action(self, observation): 

        if np.random.random() > self.epsilon: 

            # Exploit: Choose action with highest Q-value 

            actions = self.q_eval.forward(state) 

            action = T.argmax(actions).item() 

        else: 

            # Explore: Choose random action 

            action = np.random.choice(self.action_space) 

        return action 

 

# 5. Loss Function and Optimization 

DQN Loss Function (Mean Squared Error) 

• Calculating Target Q-Values 

q_target = rewards + self.gamma * q_next 

• Computing Loss Between Predicted and Target Q-Values 

loss = self.q_eval.loss(q_pred, q_target).to(self.q_eval.device) 
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# 6. Handling of Action Probabilities 

# For plotting purposes, set probability of selected action to 1 

probs = np.zeros(env.action_space.n) 

probs[action] = 1 

long_probs.append(probs[0]) 

short_probs.append(probs[1]) 

 

# 7. Exploration Strategy 

class DQNAgent: 

    def decrement_epsilon(self): 

        if self.epsilon > self.epsilon_min: 

            self.epsilon -= self.eps_dec 

        else: 

            self.epsilon = self.epsilon_min 

 

# 8. Agent Initialization Parameters 

class DQNAgent: 

    def __init__(self, gamma, epsilon, lr, n_actions, input_dims, 

                 batch_size, epsilon_end=0.01, mem_size=100000, 

                 eps_dec=1e-5, replace=1000, ...): 

        # Initialize DQN-specific parameters 

 

# 9. Training Loop Differences 

while not done: 

    action = agent.choose_action(observation) 

    observation_, reward, done, info = env.step(action) 

    agent.store_transition(observation, action, reward, observation_, done) 

    agent.learn() 

    observation = observation_ 
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