

 DYNAMIC PORTFOLIO MANAGEMENT WITH DEEP REINFORCEMENT

LEARNING

WARAMETH NUIPIAN

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF SCIENCE IN

INFORMATION AND DATA SCIENCE

DEPARTMENT OF INFORMATION TECHNOLOGY

GRADUATE COLLEGE

KING MONGKUT'S UNIVERSITY OF TECHNOLOGY NORTH BANGKOK

ACADEMIC YEAR 2024

COPYRIGHT OF KING MONGKUT'S UNIVERSITY OF TECHNOLOGY NORTH

BANGKOK

 DYNAMIC PORTFOLIO MANAGEMENT WITH DEEP REINFORCEMENT

LEARNING

WARAMETH NUIPIAN

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS

FOR THE DEGREE OF MASTER OF SCIENCE IN

INFORMATION AND DATA SCIENCE

DEPARTMENT OF INFORMATION TECHNOLOGY

GRADUATE COLLEGE

KING MONGKUT'S UNIVERSITY OF TECHNOLOGY NORTH BANGKOK

ACADEMIC YEAR 2024

COPYRIGHT OF KING MONGKUT'S UNIVERSITY OF TECHNOLOGY

NORTH BANGKOK

Thesis Certificate
The Graduate College, King Mongkut's University of Technology North Bangkok

Title Dynamic Portfolio Management with Deep Reinforcement Learning

By WARAMETH NUIPIAN

Accepted by the FACULTY OF INFORMATION TECHNOLOGY AND DIGITAL

INNOVATION, King Mongkut's University of Technology North Bangkok in Partial

Fulfillment of the Requirements for the Master of Science in Information Technology

 Dean / Head of Department

Thesis Examination Committee

Chairperson

(Dr. CHOOCHART HARUECHAIYASAK)

Advisor

(Associate Professor Dr. PHAYUNG MEESAD)

Co-Advisor

(Assistant Professor Dr. MALEERAT MALIYAM)

Committee

(Dr. KANCHANA VIRIYAPANT)

 Name : WARAMETH NUIPIAN

Thesis Title : Dynamic Portfolio Management with Deep Reinforcement Learning
Major Field : Information and Data Science

 King Mongkut's University of Technology North Bangkok

Thesis Advisor

Co-Advisor

: Associate Professor Dr. PHAYUNG MEESAD :

: Assistant Professor Dr. MALEERAT MALIYAM

Academic Year : 2024

ABSTRACT

This thesis confronts the complex challenges of the Stock Exchange of

Thailand (SET) by leveraging Deep Reinforcement Learning (DRL) to develop

optimized trading strategies. The thesis employs a rigorous methodology

encompassing data collection, preprocessing, and the development of sophisticated

algorithms for trade management and portfolio allocation. A Proximal Policy

Optimization (PPO) agent integrates both short-term and long-term signals to

enhance the strategy's adaptability and resilience in a volatile market environment,

providing a sense of reassurance about its performance. Empirical testing revealed a

significant outperformance of 2.67% compared to baseline strategies for the

portfolio. A comprehensive comparative analysis demonstrates the DRL-based

strategy's robustness across diverse market conditions unique to the SET. The study's

contributions are threefold: It provides advanced analytical tools for investors and

policymakers, offering data-driven insights and unbiased recommendations. It

introduces a novel diversified portfolio management model tailored to the SET. It

develops customized DRL algorithms that balance return maximization with risk

mitigation. This research advances financial technology and decision-making in

dynamic market settings by providing sophisticated mechanisms for addressing SET-

specific challenges. The findings not only exemplify DRL's potential in optimizing

SET trading strategies but also pave the way for future research and applications of

artificial intelligence in emerging market environments.

(Total 97 pages)

Keywords

:

Reinforcement Learning (RL), Deep Q-Network (DQN), Stock Portfolio Optimization,

Proximal Policy Optimization (PPO), Machine Learning in Finance

 Advisor

 ACKNOWLEDGEMENTS

Completing this thesis could not have been possible without the participation

and assistance of so many people. First, I would like to thank my parents for always

supporting and encouraging me.

I would also like to thank my advisors, Associate Professor Dr. Phayung

Meesad and Assistant Professor Dr. Maleerat Maliyaem, for their guidance and

assistance throughout my research and the writing of this thesis.

Furthermore, I am deeply thankful to King Mongkut's University of

Technology North Bangkok for providing me with the opportunity, resources, and

support necessary to pursue this research.

WARAMETH NUIPIAN

 TABLE OF CONTENTS

Page

ABSTRACT iv
ACKNOWLEDGEMENTS v
TABLE OF CONTENTS vi
LIST OF TABLES vii
LIST OF FIGURES viii
LIST OF ABBREVIATIONS ix
Chapter 1 Introduction 1

 1.1 Toward Reinforcement Learning in Portfolio 1
 1.2 Objective 3
 1.3 Scope 3
 1.4 Outline of Thesis 3

Chapter 2 Related Works 5
 2.1 Artificial Intelligence Methodologies in Stock Market Analysis 5
 2.2 Stocks prediction 6
 2.3 Deep Learning 8
 2.4 The application of Deep Learning 11
 2.5 Fundamentals of Reinforcement Learning 17
 2.6 Stock trading 20
 2.7 Deep Reinforcement Learning for Stock Trading 22
 2.8 Dynamic Allocation 29
 2.9 Economic Analysis 30

Chapter 3 Methodology And Experiment 33
 3.1 Overview of Model Architecture 33
 3.2 Data Preparation 34
 3.3 Data Preprocessing 37
 3.4 Hyperparameter Analysis 40
 3.5 Actor and Critic Network 42
 3.6 Deep Q-Network (DQN) Implementation 44
 3.7 Model Training 45
 3.8 Testing and Evaluation 47

Chapter 4 Results 49
 4.1 Proximal Policy Optimization 49
 4.2 Advantage Actor-Critic 53
 4.3 Deep Q-Network 57

CHAPTER 5 CONCLUSION, DISCUSSION, AND FUTURE WORK 63
 5.1 Conclusion 63
 5.2 Discussion 63
 5.3 Future Work 64

References 67

Appendix A 73
Appendix B 89
Appendix C 93
VITA 97

LIST OF TABLES

Table Page

 4-1 The portfolio (test model) of PPO 49
 4-2 The portfolio (test model) of A2C 53
 4-3 The portfolio (test model) of DQN 57

 LIST OF FIGURES

Figure Page

2-1 AI technique for Stock Analysis 5
2-2 The ARIMA model 7
2-3 Generative Adversarial Networks 10
2-4 LSTM model for price prediction 12
2-5 Random Forest 13
2-6 The Support Vector Machine 14
2-7 The AdaBoost model with decision trees for price prediction 15
2-8 Illustration of general reinforcement learning 17
2-9 DQN with a replay buffer and a target network 19
2-10 The Actor-Critic Process 25
2-11 Illustration of general actor-critic models 26
2-12 Illustration of the PPO model 27
3-1 Overview of Model Architecture 34
3-2 Illustration data after Feature Engineering 38
3-3 Illustration data after Normalization 39
3-4 Visualizing data split of Advanced Info Service PCL (AIS) 40
4-1 The price trend of the ADVANC and INTUCH of PPO 50
4-2 The price trend of the PTTEP and BDMS of PPO 51
4-3 The price trend of the MINT and CPN of PPO 51
4-4 The price trend of the AOT and TISCO of PPO 52
4-5 The price trend of the SCC and IVL of PPO 53
4-6 The price trend of the INTUCH and PTTEP of A2C 55
4-7 The price trend of the BDMS and CPN of A2C 55
4-8 The price trend of the IVL of A2C 56
4-9 The price trend of ADVANC, AOT, TISCO, and SCC of A2C 57
4-10 The price trend of the ADVANC and INTOUCH of DQN 59
4-11 The price trend of the PTTEP and BDMS of DQN 59
4-12 The price trend of the MINT and CPN of DQN 60
4-13 The price trend of the AOT and TISCO of DQN 61
4-14 The price trend of the SCC and IVL of DQN 61

 LIST OF ABBREVIATIONS

A2C Advantage Actor-Critic
AdaBoost Adaptive Boosting

AI Artificial intelligence
ANNs Artificial Neural Networks

ARIMA Autoregressive Integrated Moving Average

BH Buy-and-Hold

CPU Central processing unit

CNN Convolutional Neural Networks

DDPG Deep Deterministic Policy Gradient

DQN Deep Q-Network

DRL Deep Reinforcement Learning

EMH Efficient Market Hypothesis

EVA Economic Value Added

ETFs Exchange-traded funds

EWMA Exponentially weighted moving average

GAE Generalized Advantage Estimation

GANs Generative Adversarial Networks

GARCH Generalized Autoregressive Conditional Heteroskedasticity

GRU Gated Recurrent Unit

GPUs Graphics Processing Units

HAN hybrid attention network

LSTM Long-Short Term Memory

ML Machine Learning

MLP Multilayer Perceptrons

MSE Mean squared error

PPO Proximal Policy Optimization

RBF Radial basis function

RL Reinforcement learning

RMSE Root mean squared error

RMSprop Root Mean Squared Propagation

RNN Recurrent Neural Networks

ROI Return on Investment

ROIC Return on Invested Capital

RRL Recurrent Reinforcement Learning

SET Stock Exchange of Thailand

SVM Support Vector Machines

TD Temporal Difference

TDQN Trading Deep Q-Network

TPUs Tensor Processing Units

VAEs variational autoencoders

VWAP Volume Weighted Average Price

XAI Explainable AI

CHAPTER 1

INTRODUCTION

1.1 Toward Reinforcement Learning in Portfolio

In recent years, the financial industry has shifted toward algorithmic and data-

driven trading strategies, driven by the vast expansion of market data and the increasing

power of computational technologies. While effective in some contexts (Hendershott

et al., 2011), traditional trading strategies often need help adapting to rapid market

dynamics changes. This thesis investigates the application of Deep Reinforcement

Learning (DRL) for dynamic portfolio management, specifically targeting the Stock

Exchange of Thailand (SET). By exploring advanced DRL algorithms, this research

aims to design a robust and adaptive trading model capable of balancing returns with

risk.

Rule-based and machine learning-based approaches are the two primary groups

into which trading strategies are usually separated. Using traditional trading strategies

or statistical models that may concentrate on price momentum, liquidity, or market

sentiment, rule-based trading is predicated on predetermined rules created by human

specialists. On the other hand, trading that relies on machine learning trains models

with past data so that they can make trades on their own. Prominent methods in this

field include Recurrent Reinforcement Learning (RRL) and Trading Deep Q-Network

(TDQN) (Théate & Ernst, 2021).

By gleaning patterns and insights from past data, deep learning-driven

algorithmic trading techniques seek to maximize investment decisions, helping

investors make better judgments and reap higher returns. The use of deep reinforcement

learning algorithms in algorithmic trading has been made possible by developments in

high-performance computing and deep learning algorithms (Liu et al., 2020), which

have produced automated trading techniques, particularly for situations involving a

single asset. Through interactions with dynamic surroundings, these algorithms learn

and hone their methods to identify profitable patterns and create superior long-term

solutions. The Q function represents the expected cumulative reward an agent can

receive in deep reinforcement learning when it performs a specific action in a particular

state and then proceeds to follow a particular policy. Q networks are designed to learn

the optimal action-selection strategy by estimating the Q value (expected cumulative

reward) for various state-action pairs. The design of Q-Networks incorporating neural

networks like Multilayer Perceptrons (MLP) (Li et al., 2019), Recurrent Neural

Networks (RNN), and Convolutional Neural Networks (CNN) (Dang, 2020)

significantly impacts the model's performance. Additionally, algorithms such as

Proximal Policy Optimization (PPO) offer more excellent stability and efficiency

compared to traditional DQN, making them particularly suitable for complex trading

environments. Q networks are made to estimate the Q value, or expected cumulative

reward, for different state-action combinations to learn the best action-selection

strategy. The architecture of Q-Networks, which incorporates neural networks,

dramatically influences the model's performance. Furthermore, compared to classic

2

DQN, algorithms like Proximal Policy Optimization (PPO) are more stable and

efficient, which makes them especially useful in complicated trading situations.

A custom trading environment, StockTradingEnv, is developed using OpenAI

Gym to simulate the dynamics of the Stock Exchange of Thailand (SET). The

environment defines a discrete action space representing buy and sell decisions and an

observation space comprising key financial indicators such as open, high, low, close

prices, volume, and Volume-Weighted Average Price (VWAP). The reward function is

meticulously crafted to reflect portfolio performance, considering net profit, volatility,

and trade ratios. This tailored environment allows the Deep Reinforcement Learning

(DRL) agent to interact realistically with market data, facilitating the development of

effective trading strategies.

Existing financial time series feature extraction methods, like linear models and

traditional neural networks, often need help capturing complex and nonlinear

relationships in the data, leading to poor prediction performance due to overfitting or

underfitting. State-of-the-art time series feature extraction networks have been designed

to address these challenges using advanced techniques and perspectives.

However, existing trading strategies often rely on single models or algorithms

that may perform well under certain market conditions but fail when conditions change

or unexpected events occur (Cheng et al., 2021; Nan et al., 2022; Taghian et al., 2022).

This can lead to suboptimal trading decisions and lost profits. It is crucial to develop

adaptive trading strategies that can be learned from and adjusted to different market

conditions to tackle this issue.

Financial markets are complex systems characterized by high volatility and non-

linearity, making traditional stock trading strategies often insufficient. Machine

learning, particularly reinforcement learning (RL), has shown promise in addressing

these challenges by enabling algorithms to learn and adapt to dynamic market

conditions. Among the RL approaches, Advantage Actor-Critic (A2C) has emerged as

a powerful method that combines the benefits of policy-based and value-based

strategies. A2C employs an actor, which proposes actions, and a critic, which evaluates

them, facilitating more stable and efficient learning than standalone methods like DQN.

The actor-network in A2C is responsible for selecting actions based on the current

policy, while the critic network estimates the value function, providing feedback that

helps refine the policy. This dual-network architecture allows A2C to reduce the

variance in policy updates, leading to more reliable convergence during training.

Despite its advantages, A2C can face limitations in terms of sample efficiency

and scalability, especially in highly volatile environments such as financial markets

where rapid and significant changes are commonplace. These challenges necessitate the

exploration of more advanced RL algorithms that can offer enhanced stability and

efficiency. Proximal Policy Optimization, a more recent reinforcement learning

algorithm, addresses these limitations by introducing a clipped surrogate objective

function that prevents large, destabilizing updates to the policy. This clipping

mechanism ensures that policy updates remain within a trust region, maintaining a

balance between exploration and exploitation while safeguarding against drastic

changes that could undermine the learning process.

PPO has been successfully applied to various domains, including gaming and

robotics, demonstrating its robustness and adaptability. Its improved stability and

3

efficiency over traditional methods like DQN and even A2C make it well-suited for

complex trading environments where maintaining a reliable and adaptable strategy is

crucial. This paper investigates the efficacy of PPO in stock portfolio optimization on

the Stock Exchange of Thailand. By leveraging historical stock data, the author

develops a PPO agent to make trading decisions, optimizing the portfolio's return. This

paper details the model architecture, training process, data preprocessing techniques,

and performance evaluation of the PPO agent, providing a comprehensive case on its

application in financial markets.

1.2 Objective

The main objectives of this study are described below:

1.2.1 To develop and refine deep reinforcement learning algorithms customized

for the unique characteristics and dynamics of the Stock Exchange of Thailand.

1.2.2 To optimize trading strategies for portfolio construction on maximizing

returns.

1.2.3 To evaluate the developed DRL models and trading strategies through

extensive backtesting on historical data.

1.3 Scope

A portfolio of 10 stocks from the SET is chosen based on their market

capitalization, liquidity, and sector diversity to ensure representative coverage of the

market.

1.4 Outline of Thesis

Chapter 2 provides a comprehensive review of existing research in stock

prediction and algorithmic trading, focusing on the application of DRL. The chapter

discusses traditional stock prediction models like Autoregressive Integrated Moving

Average (ARIMA) and Generalized Autoregressive Conditional Heteroskedasticity

(GARCH), highlighting their limitations in dynamic market conditions. It then explores

how Machine Learning and Deep Learning techniques, such as Support Vector

Machine (SVM), Random Forests, and Long-Short Term Memory (LSTM) networks,

have enhanced prediction accuracy but still face challenges like overfitting.

The fundamentals of Reinforcement Learning are introduced, explaining how RL

agents interact with their environment to make trading decisions. Advanced DRL

algorithms like DQN and PPO are then discussed, showcasing their superiority in

adapting to volatile markets. The chapter also delves into algorithmic trading systems,

outlining their components and the importance of performance metrics like Return on

Investment (ROI) and Sharpe Ratio.

Through this extensive review, the chapter identifies significant research gaps,

particularly the limited application of DRL in emerging markets like Thailand. This

sets the stage for the subsequent chapters, where your research aims to develop a DRL-

based automated trading system tailored to the unique challenges of the Stock Exchange

of Thailand, thereby contributing to both academic knowledge and practical trading

strategies.

Chapter 3 is dedicated to the development and practical application of the DRL

model for the automation of portfolio optimization in the Stock Exchange of Thailand.

4

The DRL agent's basic architecture and state space's proper setting is defined at the start

of this chapter. Furthermore, the traded volumes of stocks also determine the pricing of

them. The trader can have other insights into the stock price based on the stocks. This

is achieved using technical indicators for the targeted stocks or the VWAP. Thus, the

development of the DRL agent is tackled with the construction of the reward function’s

part that seeks to suggest the yields. The straightforward approach to how the Proximal

Policy Optimization (PPO) method is implemented to practice reinforcement learning

and how the agent is then trained to make appropriate trading decisions are covered in

this part. The part also includes parts on model architecture, training process, and

additional strategies to improve its performance, such as hyperparameter tuning.

Chapter 4 presents the experimental results and analysis of the developed DRL

trading strategies, specifically Proximal Policy Optimization (PPO), Advantage Actor-

Critic (A2C), and Deep Q-Network (DQN), evaluated using historical data from the

SET. The chapter begins by outlining the experimental setup and objectives, including

the testing methodology with a separate dataset not seen during training. The evaluation

metrics used ROI, Sharpe Ratio, Maximum Drawdown, and Calmar Ratio to assess

profitability and risk management capabilities. It then delves into the performance

evaluation of each agent, providing detailed portfolio results and analyses of their

trading behaviors, supported by tables summarizing key performance metrics and

figures illustrating the agents' buy and sell signals alongside stock price movements.

The comparative analysis highlights the strengths and weaknesses of each agent in

terms of profitability and risk management, discussing their consistency across

different stocks and market conditions and identifying areas where strategies could be

refined for improved performance. The chapter concludes with a summary of the key

findings, assessing the agents' effectiveness in trading within the SET market, reflecting

on the implications for real-world trading strategies, and suggesting future work to

enhance the agents' performance and consistency across diverse market environments.

Chapter 5 summarizes the key findings of the research, emphasizing the

contributions of the DRL-based portfolio optimization framework. The section revisits

the research objectives, demonstrating how they were met through the development of

the customized DRL algorithm and its application in the Stock Exchange of Thailand.

The chapter also highlights the limitations of the current approach, suggesting areas for

further improvement, such as incorporating fundamental analysis and expanding the

model to other market environments. Finally, the potential for real-world application of

DRL strategies in portfolio management is discussed, along with future research

directions to refine and enhance the methodology.

To design a robust DRL-based model for dynamic portfolio management, it is

essential first to understand the current landscape of algorithmic trading methodologies

and their limitations. Chapter 2 provides a comprehensive review of relevant literature,

from traditional statistical models to recent advancements in machine learning and

DRL, setting the stage for this research's novel contributions.

5

CHAPTER 2

RELATED WORKS

Building on the introduction to DRL in financial markets, in Chapter 2, we

explore the evolution of algorithmic trading, beginning with traditional stock prediction

models and advancing deep reinforcement learning (DRL) applications, starting with

foundational stock prediction models and extending through machine learning and DRL

techniques, this chapter traces the evolution of automated trading systems (SET, 2024).

Section 2.1 introduces AI techniques in stock analysis, setting the foundation for DRL’s

adaptability in complex environments. Section 2.2 reviews econometric models, such

as ARIMA, followed by deep learning methods like CNN and LSTM in Section 2.3.

Section 2.4 presents reinforcement learning fundamentals, while Section 2.5 examines

standard algorithmic trading strategies. We then discuss DRL’s role in automating stock

trading decisions in Section 2.6, followed by an analysis of advanced DRL algorithms

in Section 2.7. Lastly, Section 2.8 addresses challenges and future directions,

highlighting DRL’s potential for further innovation in financial markets.

2.1 Artificial Intelligence Methodologies in Stock Market Analysis

The integration of artificial intelligence methodologies illustrated in Figure 2-1,

with particular emphasis on Deep Reinforcement Learning (DRL) agents, represents a

paradigm shift in quantitative trading systems. DRL frameworks demonstrate superior

adaptability in navigating the inherent complexities of financial markets, characterized

by non-stationary distributions and multifaceted dependencies (Li et al., 2020; Liu et

al., 2022). Empirical evidence indicates that DRL-based trading strategies consistently

achieve higher Sharpe ratios and cumulative returns compared to conventional portfolio

allocation methods, with documented annualized returns of 22.24% against traditional

benchmarks (Li et al., 2020). This performance differential underscores the efficacy of

AI-driven approaches in synthesizing complex market signals and executing dynamic

trading decisions across diverse market regimes.

FIGURE 2-1 AI technique for Stock Analysis

The hierarchical framework presented illustrates the sophisticated integration of

artificial intelligence methodologies in stock market analysis, bifurcating into

6

Supervised Learning and Deep Learning paradigms. This taxonomic organization

demonstrates the systematic application of machine learning algorithms for financial

market prediction and trading optimization.

2.1.1 Supervised Learning Framework

2.1.1.1 Ensemble Learning Architectures leverage the power of multiple

learning algorithms to enhance predictive accuracy. The Random Forest algorithm

implements a bootstrap aggregating approach, constructing multiple decision trees to

generate robust predictions for stock movement patterns. Complementing this,

AdaBoost employs an iterative boosting mechanism, systematically adjusting weights

on misclassified instances to optimize predictive performance.

2.1.1.2 Support Vector Machine Implementation employs kernel-based

optimization to construct optimal hyperplanes in high-dimensional feature spaces. This

mathematical foundation enables precise classification of stock price trajectories

through nonlinear mapping of market indicators.

2.1.2 Time Series Analytics

The ARIMA methodology provides a rigorous statistical framework for

analyzing temporal dependencies in stock price movements. This approach

incorporates autoregressive components and moving averages to model complex

market dynamics and seasonal patterns.

2.1.3 Deep Learning Architecture

2.1.3.1 Reinforcement Learning Paradigm implements a Markov

Decision Process to optimize trading strategies through interaction with market

environments. This approach enables the development of adaptive trading agents that

optimize decision policies based on historical market states and reward signals.

2.1.3.2 Recurrent Neural Network Implementation The architecture

incorporates two sophisticated RNN variants.
a) GRU (Gated Recurrent Unit): Implements an efficient gating

mechanism for processing sequential market data.

b) LSTM (Long Short-Term Memory): Employs advanced

memory cells to capture long-term dependencies in financial time series.

2.1.4 Methodological Integration

This comprehensive framework facilitates the synthesis of multiple analytical

approaches, enabling researchers and practitioners to implement hybrid strategies that

leverage the complementary strengths of different algorithmic paradigms. The

integration of supervised and deep learning methodologies provides a robust foundation

for developing sophisticated trading systems that can adapt to dynamic market

conditions.

The systematic organization of these methodologies demonstrates the evolution

from traditional statistical approaches to advanced neural architectures, reflecting the

increasing sophistication of quantitative finance and algorithmic trading strategies.

2.2 Stocks prediction

stock price movements based on historical data, market conditions, and other

external factors. The ability to predict stock prices accurately is crucial for investors, as

it directly influences buy, sell, hold decisions, ultimately determining the profitability

of a portfolio. Over the years, numerous methods have been developed for stock

prediction, ranging from traditional statistical models to advanced machine learning

7

and reinforcement learning algorithms. Each approach has its advantages and

limitations, with varying degrees of success in different market conditions.

Prediction is a key area of research in the financial domain, aimed at forecasting

future stock price movements based on historical data, market conditions, and other

external factors. The ability to predict stock prices accurately is crucial for investors, as

it directly influences buy, sell, hold decisions, ultimately determining the profitability

of a portfolio. Over the years, numerous methods have been developed for stock

prediction, ranging from traditional statistical models to advanced machine learning

and reinforcement learning algorithms. Each approach has its advantages and

limitations, with varying degrees of success in different market conditions.

Similarly to frequent global difficulties of the economy with the depreciation of

the national currency and the existence of the non-performing stock market in many

countries around the world, the rapid change of the price of assets is often named as

one of the problems (Nassirtoussi et al., 2014). The trends obtained for the asset price

prediction were quite clearly visible in the initial stages, where more traditional

econometric models, such as the use of algorithms, were first noticed, and ARIMA and

GARCH were given the names, respectively (Kara et al., 2011). The baseline models

of ARIMA are shown in Figure 2-1. By the side of the corresponding patterns, these

were most inappropriately picked by the people, as the weaker analysis was innovative

and was the focal point of the attack of the viruses to the hosts. Yet with the worsening

of the malaise and the necessity of a strong virus as opposed to a weak one, immunity

was hit, and the old virus was zapped due to the changes which were in the air at that

time. The key point is that trends in the market that relate to asset prices are usually

transient and can either come about in times of short durations with the coming and

going of seasons, which may be periodic or abrupt. Ultimately, they can also remain

for long periods and change with time, as shown in the biannual studies undertaken

about stock prices in Vietnam in the recent period (Yadav et al., 2020).

FIGURE 2-2 The ARIMA model

The first one to postulate the Efficient Market Hypothesis (EMH) was that person

in 1965, using the theory of a short financial market price change pattern. But for

initiating this theory at the beginning of the project, he uses the random walk model to

illustrate that the change of the asset price will be random, which results in a different

model and would be unpredictable. The fact that the theory stuck in the life of the

discussions promoted soon after different investigations as a continuation with the

outcomes being that the hypothesis is valid only if there is efficiency; thus, the

information produced will be asymmetric. The ongoing debate was one in which many

studies found no strong EMH in many places worldwide, e.g., in Southeast Asian

countries that never had EMO (Li et al., 2020). An article mapping the effect of the

news on stock prices was published, which concluded that news could whipsaw stock

8

prices, e.g., a stock group may be affected if they see some common stock. A joint stock

with a similar buying and selling price on the trading day will be more likely to be

trained in short-term investments during its term, in this case, the first week in Hong

Kong. In the short run, a correlational market can be very efficient because of

independent processes going on if trading occurs where a slight chance is for the market

to be out of balance. A news standpoint, at least, could only be seen by the market in

sources like news outlets and social media.

More than ever, the use of ML and DL has strengthened the stock prediction area.

They have realized this by detecting non-linear and complex data. During 2010, stocks

were commonly analyzed through SVM, Random Forest, and Artificial Neural

Networks (ANNs) algorithms since they can discover stock patterns through the

processing of massive data (Jordan & Mitchell, 2015; Nelson et al., 2017). However,

they also need to work on facing problems of overfitting and real-time decision-making.

Due to this, scientists in this field have been thinking about newer examination

methods.

The time after 2010 was the age when many scientists chose to delve into the

study of RL and DRL, which would make trading systems adaptable to the unstable

market. These came in the form of a model being fed with its learning experiences with

the market over time, which resulted in the model being able to adapt its strategies

through past applications and feedback from the market environment. Traditional

models that wholly depended on historical data from a single source were the opposite

of these recent RL and DRL models. These new models could fine-tune decision-

making techniques by using data from real-time markets; hence, they could be more

precise and profitable in developed and emerging markets (Hu et al., 2018).

Until 2020, the top solutions were the types of integrated learning that had

advanced to sentiment analysis and reinforcement learning. Research (Bollen et al.,

2011) on finding the most suitable kind of cancer therapy for patients by considering

the sentiments received from several datasets, such as company reports, news headlines,

and text data mining, together with social media, clearly highlights the exponential role

of bridging ML/DL algorithms with various data sources, which led technology to catch

up with asynchronous data reporting and social media.

A year later, the research tried to integrate these models into the decision-making

process by examining the processing power of the procedure and the model scale. A

mix of sentiment analysis, technical indicators, and learning models keeps ongoing

research. At the same time, the focus is increasingly on the application of new sources

of data and technology (Weng et al., 2018).

2.3 Deep Learning

Deep Learning is an advanced subset of machine learning that utilizes artificial

neural networks with multiple layers to model and interpret intricate patterns within

large and complex datasets (LeCun et al., 2015). Unlike traditional machine learning

algorithms, which often rely on manual feature engineering, deep learning

autonomously discovers hierarchical data representations. This capability facilitates

processing high-dimensional and unstructured information such as images, audio, and

text, enabling DL models to excel in tasks that require understanding complex data

structures and relationships.

9

2.3.1 Foundations of Deep Learning

At the core of deep learning are ANNs, which are computational models inspired

by the biological neural networks of the human brain. An ANN consists of layers of

interconnected neurons, each performing computations through weighted inputs and

activation functions. The architecture typically includes an input layer that receives the

initial data, multiple hidden layers that perform feature transformations and

abstractions, and an output layer that produces the final prediction or classification.

Each neuron in a layer applies a weighted sum of its inputs followed by a non-linear

activation function, such as ReLU (Rectified Linear Unit), sigmoid, or tanh, introducing

non-linearity into the model and enabling the network to capture complex patterns.

2.3.2 Key Architectures in Deep Learning

Deep learning encompasses a variety of neural network architectures, each

tailored to specific types of data and tasks. CNNs are primarily used for spatial data

analysis, such as image and video recognition. They utilize convolutional layers with

filters that automatically detect spatial hierarchies and features like edges, textures, and

shapes, making them highly effective in capturing local patterns while reducing the

number of parameters through weight sharing and pooling operations.

Recurrent Neural Networks, including variants like LSTM and Gated Recurrent

Unit (GRU) networks, are designed for sequential data processing, such as time series

analysis, natural language processing, and speech recognition. RNNs feature recurrent

connections that allow information to persist across time steps, enabling the network to

maintain context and learn long-term dependencies. This is crucial for tasks involving

temporal dynamics (Hochreiter & Schmidhuber, 1997).

Autoencoders are primarily used for unsupervised learning tasks such as

dimensionality reduction, feature learning, and anomaly detection. They consist of an

encoder that compresses the input into a latent-space representation and a decoder that

reconstructs the input from it. Variants like denoising autoencoders, variational

autoencoders (VAEs), and sparse autoencoders enhance specific aspects of the learning

process, improving robustness and efficiency in feature extraction.

By offering a fresh method for producing synthetic data, Generative Adversarial

Networks, or GANs show in Figure 2-3, have completely transformed the field of

generative modeling. The basic idea is that two neural networks, the discriminator and

the generator, are always competing. Essentially "fooling" the discriminator, the

generator aims to generate data that closely mimics real-world data. Conversely, the

discriminator assesses both produced and real data, becoming increasingly accurate in

differentiating between the two. Over time, extremely realistic synthetic data is

produced by the generator because of this adversarial training, which forces iterative

output improvement from the generator.

10

FIGURE 2-3 Generative Adversarial Networks

GANs have an impact on many different applications. GANs can produce lifelike

images of scenes, objects, and even human faces that are not real through image

synthesis. For sectors like virtual reality and entertainment, this capability is priceless.

GANs aid in the expansion and diversity of datasets for data augmentation, which is

especially helpful when data is complex to come by or prohibitively expensive to

acquire. By applying the stylistic components of one image to another, style transfer

allows GANs to alter images. For example, it can be used to change a photograph into

the look of a well-known artwork. In machine learning and artificial intelligence

research, GANs have opened new vistas, making creating synthetic datasets almost

identical to real ones easier.

2.3.3 Training Deep Neural Networks

Training deep neural networks involves systematically adjusting the network’s

parameters, including weights and biases, to minimize a loss function quantifying the

difference between the predicted outputs and targets. This process begins with forward

propagation, passing input data through each network layer to generate predictions

based on the current parameter values. The loss function then calculates the prediction

error, providing a metric for optimization. To reduce this error, backward propagation

is performed, where gradients of the loss concerning each parameter are computed

using the chain rule, enabling precise adjustments to the weights and biases.

11

Optimization algorithms such as Stochastic Gradient Descent, Adam, and Root Mean

Squared Propagation (RMSprop) are employed to update the network’s parameters

efficiently, ensuring a balance between the speed of convergence and the stability of

the training process. Additionally, regularization techniques like dropout, L2

regularization, and batch normalization are applied to prevent overfitting and enhance

the model’s ability to generalize to new data by reducing complexity and improving

training dynamics. This comprehensive training framework enables deep neural

networks to learn complex patterns and make accurate predictions across a wide range

of applications.

2.3.4 Advancements Enabling Deep Learning

The rapid advancement and widespread adoption of deep learning can be

attributed to several key factors. The increase in computational power, particularly

using Graphics Processing Units (GPUs) and specialized hardware like Tensor

Processing Units (TPUs), has significantly accelerated the training of deep neural

networks, enabling the handling of large-scale models and datasets. The availability of

large datasets across various domains provides the vast amounts of labeled and

unlabeled data necessary for training deep learning models effectively.

Improvements in algorithms and architectures have also played a crucial role.

Innovations in neural network architectures, optimization techniques, and training

methodologies have enhanced the performance and scalability of deep learning models,

allowing them to achieve state-of-the-art results in numerous applications.

Additionally, the development of open-source frameworks such as TensorFlow,

PyTorch, and Keras has democratized access to deep learning technologies, facilitating

research and application development by providing user-friendly tools and extensive

libraries.

2.4 The application of Deep Learning

Machine learning and combinatorial data algorithms for learning analytics in

technology spaces are all part of the scientific proof. One of the basic ideas is the

interaction of algorithm diversification and combination and the use of artificial

intelligence to provide a new type of learning for those where discipline is absent by

testing with courses.

The rise of DL models showed a move away from these traditional methods.

Research revealed that DL models such as LSTM networks convincingly outperformed

ARIMA and SVM in stock trend prediction. This leap was ascribed to the DL models'

ability to capture the temporal patterns of financial data and simultaneously handle the

high-dimensionality properties with the complex dynamics, making them more suitable

in financial data featuring vibrancy, noise, and non-linearity.

Deep learning models like LSTM are now utilized primarily in the financial

industry for stock price prediction. LSTM is a RNN designed to learn data sequences

over time (Hochreiter & Schmidhuber, 1997). Its characteristic of long-run dependency

in the time series data allows it to be used both for financial forecasting and long-time

experience with the data, which is crucial for making accurate predictions.

An LSTM network maintains a memory cell with lengthy retention times. The

forget gate, input gate, and output gate are the three primary gates shown in Figure 2-4

that control the information flow in this memory cell. The forget gate determines which

data from the memory cell should be erased. It generates values between 0 and 1 by

12

applying a sigmoid function to the current input and the prior hidden state. These

numbers serve as weights, indicating how easily knowledge is lost.

The input gate decides what fresh data is added to the memory cell. Additionally,

a sigmoid function is used to build a filter to determine which input values need

updating. Furthermore, a tanh function produces a vector of new candidate values that

could be added to the state. Combining these two functions updates the cell state with

relevant new information. Lastly, the output gate decides what information from the

cell state is sent to the next hidden state, ultimately influencing the output. It filters the

cell state through a sigmoid function and then multiplies it by the tanh of the updated

cell state to produce the final output. This gating mechanism allows LSTMs to learn

and remember essential patterns over long sequences, making them ideal for time-

dependent tasks like stock price prediction.

FIGURE 2-4 LSTM model for price prediction

Besides its potential for processing complex temporal data, DL provides another

significant advantage. This is the ability to feature automatic extraction. Traditional ML

models like SVM or decision trees require careful and predefined feature engineering,

which is a process consisting of the manual selection of those features known to be

relevant concerning the domain. On the other hand, DL models, especially CNNs and

LSTM networks, can learn high-level abstract features directly from raw data (LeCun

et al., 2015; Sülo et al., 2019). The capacity to sidestep the need for manual feature

engineering has been one of the factors leading to the general acceptance of DL models

in finance and other relevant domains.

Recent research has tackled using DL models in more challenging prediction

tasks in financial markets. A case in point is the study (Avramelou et al., 2023), in

which univariate and multivariate LSTM and CNN models were set side by side to

predict the opening price of stocks listed on the Indian stock markets. Thus, the authors

attested that LSTM was more accurate than CNN when applied to multivariate time

series, which use several input features, such as volume and price. However, CNN

13

models still perform reasonably, revealing the possibility of using DL architectures

apart from LSTM.

Ensemble techniques have also been used in combination with prediction models

to enhance the modeling accuracy. The authors of the article (Ballings et al., 2015)

employed ensemble techniques to predict stock market trends, employing numerous

different models like random forest, SVM, and Adaptive Boosting (AdaBoost). They

discovered that ensemble models could outperform individual models to some extent

since they might find different angles to the data, reducing the chances of overfitting or

prejudice in predictions. In finance, ensemble methods have proved particularly useful

due to their capacity to amalgamate various insights from diverse data sources due to

the markets' unpredictable nature.

The Random Forest ensemble learning technique, shown in Figure 2-5, is applied

to tasks including regression and classification. During training, it builds many decision

trees and outputs the average prediction made by each tree. To provide variation among

the trees, a random selection of characteristics and a random subset of data are used to

construct each decision tree in the forest. When a model learns the training data too

well and performs poorly on fresh, unseen data, it is said to be overfitting. This

randomization helps to reduce overfitting. It is a powerful tool because Random Forest

can handle big datasets with increased dimensionality and maintain accuracy even when

a sizable amount of data is missing. The model produces more accurate and dependable

predictions by averaging biases and reducing volatility by merging the forecasts of

numerous trees. Because Random Forest can capture intricate interactions among many

variables impacting stock values, it is conducive in financial modeling.

FIGURE 2-5 Random Forest

Strong supervised learning models for regression and classification applications

are support vector machines. SVM's basic idea is to identify the ideal hyperplane in a

feature space for dividing data points into distinct groups. The margin of the distance

between the hyperplane and the closest data points from each class, or support vectors,

14

is maximized to determine the location of this hyperplane. SVM seeks to increase the

model's capacity to generalize to fresh, untested data by optimizing this margin,

therefore lowering the possibility of misclassification, as shown in Figure 2-6.

Many real-world scenarios do not allow for a straight line to precisely divide data.

SVM uses slack variables and soft margins to address this, enabling some data points

to be incorrectly classified or fall inside the boundary. Using kernel functions to manage

non-linear interactions in the data is another fundamental idea of SVM. Kernels

transform the input features into a higher-dimensional space that may contain a linear

separator. The linear, polynomial, sigmoid, and radial basis function (RBF) kernels are

examples of common kernel functions. The computation is more efficient because of

the kernel trick, which enables SVM to carry out this transformation without explicitly

calculating the coordinates in the higher-dimensional space. SVM can handle a wide

range of data distributions by selecting the right kernel, which makes it flexible enough

to capture intricate patterns needed for jobs like stock market prediction.

FIGURE 2-6 The Support Vector Machine

Adaptive Boosting, shown in Figure 2-7, is an ensemble learning method that

builds a powerful predictive model by combining several weak learners. A model that

does only marginally better than random guessing is called a weak learner. AdaBoost

trains these poor learners stepwise, giving more attention to data instances that earlier

learners misclassify as they progress. At the beginning, equal weights are assigned to

each training data point. Each iteration ends with a weight adjustment: instances that

were incorrectly classified have their weights reduced, and instances that were correctly

classified have their weights increased. This adaptive weighting procedure contains the

15

principle. AdaBoost encourages second and subsequent learners to focus on these

difficult scenarios by emphasizing them more. Based on their accuracy, each weak

learner adds to the final model; learners with higher accuracy significantly impact the

final forecast. A robust model is produced by adding together all the weak learners, and

this model frequently outperforms any single learner in terms of accuracy.

However, AdaBoost may give undue weight to misclassified occurrences that are

anomalies rather than typical of the underlying data distribution, which makes it

susceptible to noisy data and outliers. Because of this sensitivity, the data may need to

be carefully adjusted and occasionally preprocessed to lessen the influence of outliers.

AdaBoost's capacity to blend distinct weak learners aids in acquiring various market

signals and patterns in financial modeling. It can enhance the accuracy of stock price

predictions by utilizing several viewpoints, which makes it an invaluable instrument in

the ensemble learning toolbox.

FIGURE 2-7 The AdaBoost model with decision trees for price prediction

Recent advancements in the development of deep reinforcement learning have

also resulted in new prospects for financial prediction. Unlike traditional supervised

learning methods fed through labeled data, RL methods are taught through interacting

with their surroundings and receiving responses as rewards or penalties. DRL is an RL

method resulting from merging RL with deep neural networks, making it feasible for

models to acquire complicated decision strategies over time. In trading, for instance,

DRL has been used to design strategies that adjust to market conditions. For example,

DRL models can learn asset allocation based on historical market data and reward,

leading to increased financial return.

Despite the claim of DL and DRL models, many things could still be improved.

The biggest one is the availability of high-quality, marked financial data. While large

datasets are necessary for training DL models, financial data often needs fixing, such

as noise, missing values, and other inconsistencies. Furthermore, the temporal nature

of economic data introduces autocorrelation, making model training even more

difficult. Some studies have addressed these challenges by applying pre-processing

techniques such as normalization and feature scaling, which help DL models converge

16

faster and perform better (Hu & Lin, 2019). However, further research is essential to

develop applicable methods for handling noisy, high-dimensional financial data.

Besides the issues related to data, there is also the problem of interpretability,

which holds a significant place in applying DL models to finance. DL models, on the

one hand, successfully capture the various intricate patterns in data. Still, on the other

hand, they are often criticized for being called "black boxes" because their internal

decision-making processes are not easily understood. This lack of interpretability may

hinder, especially in finance, the need of the decision-makers to know how the

predictions come, and which factors drive specific results. Some researchers

(Lakshmanarao et al., 2023) point out that interpretable models are crucial in high-

stakes applications like financial forecasting, where errors can lead to substantial

monetary losses.

Not long ago, scholars had already commenced the solution of making DL

learning more transparent and interpretable. For example, attending to the features in a

dataset, which are needed mainly by attention mechanisms, is now integrated into DL

models to enable them to make more understandable predictions. Further methods, such

as Explainable AI (XAI), intend to explain the decision-making process of DL models

in detail. These new achievements align with the actual scenario in the field because

professionals should be informed about model interpretability and responsibility when

dealing with it, without it being just a bonus.

Another new aspect in the field is the use of hybrid models that mix DL with

traditional ML models to take advantage of the good aspects of both methods. The use

of the hybrid models improves stock price prediction with the help of the DL models,

as they capture complex patterns effortlessly and make it simple for users to read. For

instance, a hybrid model might be used with an LSTM network to process the old stock

prices and then a random forest model for final prediction. Such models have been

found to have a greater success rate than those with classical statistical methods. It was

observed mainly in cases where the data in question was noisy and non-linear.

Transfer learning, a technique that allows models to benefit from one task to

another, has gained momentum in financial ML. This approach is especially relevant in

finance, where the common features are shared between different markets or assets.

However, despite these advances, there is still much work to be done in evaluating

deep learning models in financial forecasting. Many studies use loss metrics such as

mean squared error (MSE) or root mean squared error (RMSE) as model performance

benchmarks. These metrics have an adverse influence, as they may not fully represent

the real-world implications of a model's predictions, particularly in the trading

environment where transaction costs and risk are relevant. Integrating evaluation

(Kumar et al., 2023) metrics to the model, such as the Sharpe ratio or maximum

drawdown, accounts for a trading strategy's risk-adjusted returns. These metrics provide

a more accurate picture of a model's performance in practical trading scenarios.

In summary, machine learning has come a very long way in the last ten years.

This was particularly visible in the financial domain. Traditional models like SVM and

AdaBoost have been thrown aside in the finance industry, and now the deck is stacked

with more intricate deep learning frameworks, LSTM and CNN, that can handle

financial data, which is highly dimensional and packed with noise. The emergence of

deep reinforcement learning, together with colleagues, has taken financial prediction to

another height, making time-variant models capable of working with shifting market

17

conditions. Nevertheless, the model's data availability, interpretability, and accuracy

are still issues to be conquered. Through research that tackles these ways, the vision of

ML in finance promises to have future applications like automated trading systems,

portfolio optimization, and more.

2.5 Fundamentals of Reinforcement Learning

Rather than restructuring through a decision-making process, a sequential course

also enables agents to learn a wide range of decision-making processes in situations

characterized by uncertainty, often financial markets. In reinforcement learning, the

agent learns the optimal way to approach the environment by getting rewards and

penalties with time. Thus, this method is an appropriate way of teaching trading as the

market is a game against an agent, and the agent’s strategy focuses on decisions of when

to buy and sell or hold the stock depending on market price, volatility, and other

indicators. The following stages characterize the RL model: the agent (the decision-

maker), the environment (the system the agent interacts with), states (the environment

representation at different periods), actions (possible movements that the agent can

choose), and rewards (feedback from the environment). The agent's problem is finding

a policy π(a∣s) that best maps states to actions and such that the expected average steps

are more than the most that can be got. This process is formalized via Markov Decision

Processes (MDPs) Illustrate in Figure 2-8, and these are characterized by states S,

actions A, transition probabilities P(s′∣s, a), and rewards R(s, a) (Puterman, 2014).

FIGURE 2-8 Illustration of general reinforcement learning

Rewards derive from value functions in the form of function estimates that

embody the best outcomes of a given state or decision. The state-value function V(s)

stands for the expected return that starts from state s, while the action-value function

Q(s,a) signifies the probable return for taking action a in state s. The Bellman equation

provides a recursive decomposition of these values:

𝑉(𝑠) = ∑ 𝜋(𝑎|𝑠) ∑ ′𝑃(𝑠′|𝑠, 𝑎)[𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉(𝑠′)]𝑠𝑎 (2-1)

18

where γ is the discount factor that determines how much the agent values future

rewards. The Bellman equation lays the foundation for many RL algorithms by

breaking down complex, long-term decisions into simpler subproblems.

One of the essential methods for updating value estimates in RL is Temporal

Difference (TD) learning, which updates value functions based on the difference

between successive estimates of future rewards. This method can be formalized as:

𝑉(𝑠) ← 𝑉(𝑠) + ∞[𝑟 + 𝛾𝑉(𝑠′) − 𝑉(𝑠)] (2-2)

where α represents the learning rate. TD learning is the basis for more advanced

algorithms such as Q-learning, an off-policy algorithm that directly learns the optimal

action-value function Q(s, a)* (Watkins & Dayan, 1992). The Q-learning update rule is

given by:

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + ∞[𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] (2-3)

Building upon the foundational principles of Q-Learning, DQN, illustrated in

Figure 2-9, leverages the power of deep neural networks to effectively approximate the

optimal action-value function Q∗(s, a) in environments with vast and complex state

spaces, such as financial markets. Unlike traditional Q-Learning, which relies on a

discrete table to store Q-values for each state-action pair, DQN employs a convolutional

neural network (or other suitable architectures) to generalize learning across similar

states, significantly reducing memory requirements and enhancing scalability. This

neural approximation allows the agent to discern intricate patterns and relationships

within high-dimensional financial data, such as price movements, trading volumes, and

various technical indicators, essential for making informed trading decisions.

Additionally, DQN incorporates experience replay, a mechanism that stores past

experiences in a replay buffer and samples mini batches of these experiences randomly

during training. This approach mitigates the issue of correlated data samples, leading

to more stable and efficient learning by breaking the temporal dependencies inherent in

sequential trading data. Furthermore, the introduction of target networks, a separate

network with periodically updated weights used to compute target Q-values, helps

prevent harmful feedback loops and reduces the risk of divergence during the training

process. These innovations collectively enable DQN to learn robust trading strategies

that can adapt to financial markets' stochastic and non-stationary nature. In practical

applications, DQN has demonstrated its capability to outperform traditional trading

algorithms by continuously refining its policy through interactions with the market

environment, optimizing buying, selling, and holding actions to maximize cumulative

returns while managing risk. Despite its strengths, implementing DQN in financial

trading must carefully address challenges such as ensuring sufficient exploration,

avoiding overfitting historical data, and maintaining computational efficiency to

operate in real-time trading scenarios. Ongoing research continues to enhance DQN's

efficacy in trading by integrating advanced techniques like Double DQN, which further

reduces overestimation bias, and Dueling DQN, which separately estimates state values

and advantages, thereby improving the agent's ability to prioritize beneficial actions

under varying market conditions.

19

FIGURE 2-9 DQN with a replay buffer and a target network

Deep neural networks handle large and complex state spaces. They use

experience replay, a technique where past transitions (states, actions, rewards, and next

states) are stored and randomly sampled to train the network. This reduces the

correlation between consecutive samples, stabilizing the learning process. Additionally,

target networks are employed in DQN to provide more consistent Q-value targets by

updating the network's parameters at a slower rate (Mnih et al., 2015).

Another crucial aspect of RL is the exploration vs exploitation dilemma.

Essentially, the agent must balance exploration (experimenting with new actions to

discover rewarding strategies further) and exploitation (capitalizing on the knowledge

of actions that previously resulted in high rewards). The trade-off situation is

particularly relevant in stock trading, where market conditions vary. Overutilization

may lead the agent to a missed opportunity to explore new concepts or strategies, which

could have brought a more significant increase in the portfolio. Algorithms built

similarly to reinforcement learning, like scenarios to exploit the error found within the

datasets to learn and make better estimates. For example, the agent sometimes selects a

random action (exploration) to leave suboptimal solutions (Serrano, 2022).

Among all the different trading reinforcement learning technologies, DQN is the

most basic one, and researchers have come up with additional technologies relying on

reinforcement learning. The PPO has been considered to equalize the risk of moving

away from the optimal policy in the update. A2C is the process through which the

system trains itself to make the most effective decisions by allowing it to select from

numerous alternatives while remembering the solution to the sample problem. The

input avoids the necessity of a graduating student lest it may take much time to provide

instruction for the output. Then, the associated teacher may have many other procedures

to do so; that is the issue.

Despite being highly of the possibilities, RL has found itself in many difficulties,

mostly encountered when employed in applications like automated trading. An

20

important among these is overfitting, in which the model may perform exceptionally

well based on historical data but cannot be generalized based on unseen market

conditions (Moody & Saffell, 2001). Consistency issues within the training phase are

additional difficulties that the environment probably confronts; a slight change in

market conditions can lead to the agent’s performance fluctuating from good to bad.

Moreover, RL often needs long training periods and computational resources,

especially when the environment has a sparse reward and thus is not fully observable.

An example of that can be found in a stock trading environment where the ultimate

reward comes after only one of the possible decisions, in which the agent must try and

win the most profits.

Recent advances in RL, including DRL, have addressed some of these obstacles

through deep learning models designed to approximate the value function and policy

more efficiently. DRL deployed in algorithmic trading has exhibited a remarkable

performance, allowing computerized agents to regulate their behaviors in volatile

market conditions, optimize trading operations, and allocate resources more efficiently.

The most classic one is AlphaGo, which Google DeepMind created. DRL made a giant

leap in complex decision-making environments, which resembled one of the cases

encountered in the financial markets (Silver et al., 2016).

Rather than simply using neural networks, experience replay, and other

innovations, RL-based trading systems have moved on to the stage where they meet the

requirements of solving quantitative issues, such as managing vast amounts of financial

data, making real-time decisions, and detecting systematic errors. These progressive

developments are being rolled out to the edge of technological and economic

possibilities in the trading industry, making RL a key technology for the years ahead.

2.6 Stock trading

Their number one concern has always been to predict future returns and quantify

the risks of their investment strategies, not the accuracy or validity of the predicted

prices or trends. However, these concerns have been broader risk management over

time, with returns management alongside the process of moving to the center. Research

studies in the last year are about how the current financial world is very complex and,

therefore, is not a matter of trading statistics alone, issued warnings, but risks also (Lei

et al., 2020). The primary and proficient trading strategy evaluation tools include

annualized and cumulative returns, the Sharpe ratio, annual volatility, and maximum

drawdown.

Annualized returns are gains or income from investments over one year, while

cumulative returns are the total return acquired during a specific period. These two are

critical factors in finding the roots of the deficiency of a particular strategy. However,

contemplating the possible risks and the fact that the strategy is not winnable is also

extremely important. The Sharpe ratio is a mathematical measure that reflects the

relationship between risk and reward. It is computed by subtracting the risk-free rate

from the annual returns and dividing the result by the annual volatility. This means that

a higher Sharpe ratio is the reward for a lower trade risk.

Annual volatility, calculated as the standard deviation of the portfolio returns over

a year, is the third risk measure. Alongside volatility, measured by the R-squared of the

linear fit of cumulative log returns, the two indicators account for risks and

performance. Drawdown, which indicates the total percentage loss before partial

21

recovery, and maximum drawdown, which points to the most severe negative impact

achieved within a given time frame, are two tools the investor uses to evaluate the

riskiness of the investment strategy.

Algorithmic trading systems are generally based on a plan that covers the

following phases: pre-trade analysis, signal generation, trade execution, post-trade

analysis, risk management, and asset. In the last period, the trend has increasingly

leaned towards involving artificial intelligence (AI) tools in the system, including ML,

DL, and RL models. Automating tasks like feature extraction, price prediction, and

trade execution is an example of the technology.

The "Buy-and-Hold" (BH) strategy is when there is a specific time duration when

stocks are bought at first, and they are then held for the duration to understand trading

models (Dantas & Silva, 2018). BH is a trade that merely demands one buy/hold trade

to make a fast profit. This downwardly simple approach BH even proved to be the

heavy benchmark for many REPLNIQX addresses, which could not displace it

constantly. On the contrary, the new DRL models have demonstrated the potential to

perform better under good market conditions.

Two major approaches have been recognized for algorithmic trading: knowledge-

based and data-driven. The knowledge-based strategy uses expert features. In contrast,

the data-driven strategy, which has become the primary method in recent years,

employs machine learning to facilitate decision-making. Additional data sets are used

to enhance forecasts.

For instance, a trading strategy combined stock prices and sentiment analysis

using a support vector machine (SVM), thus facilitating decision-making, especially in

the information technology and retail sectors. Nonetheless, the writers considered deep

learning models might be more efficient for sentiment analysis and price prediction

tasks.

Moreover, newer models, like a hybrid attention network (HAN), have been

developed to predict stock price trends using news sentiment and price data (Hu et al.,

2018). This model gained an annualized return of 0.611 for a portfolio of 40 stocks,

leaving the BH strategy far behind, as it returned only 0.04. However, the trading

strategy needed to be more complex. Therefore, it could be enhanced by incorporating

reinforcement learning that allows the system to learn from the environment and adapt

over time.

The first deep learning applications in the Brazilian stock market trading systems

used MLP models to predict stock prices and make trades. These developed systems

have been observed to have a drastic reduction in error (measured by MAPE) and got

higher returns than the traditional models like moving averages.

Exchange-traded funds (ETFs) are instruments that transmit the underlying

indexes or simplify the operation of a pool of stocks by reducing the complexity of the

overall trading process. They are the most preferred asset class in the world for

algorithmic trading, though, on an individual level, a trader has the same ability to

execute a trade. The argument being put forward here is not about being capable of how

many models a human trader can trade in an algorithm; instead, it is more about which

model is being used (Johnman et al., 2018). Agencies and institutional ink any other

regulated business like Stockbrokers, Real Estate Agents, and Auto dealers as these

persons are licensed personnel authorized to carry or sell the business's products and

services. Stockbrokers always have IPOs of new stocks, and they are certified by the

22

stock exchange to trade. To trade several stocks, robots usually contribute to complexity

since the need to verify and monitor multiple is increased.

Dealing with execution costs and sequencing remains a significant hurdle in

algorithmic trading. Most transaction cost models take only the volume of a given trade

as a base point for measuring trading costs and neglect other primary factors like

intraday price volatility and transparency. The algorithms being developed to execute

the trade should be fair. This means they should be designed to consume the sparse data

in a particular fashion and not over-consume it. Consumer finance is another sector that

is being majorly disrupted by two main trends; in most cases, it's the new virtual

currency that is responsible for the changes. Credit card companies that withdraw a

1.75% fee on particular transactions and do not charge the same transaction on others,

with lower volatility experience, are likely candidates for such pricing models.

Sequential decision-making models such as the RL and DRL are able to solve this

problem by allowing systems to learn from their past mistakes and in the future, they

can optimize their decisions (Dantas & Silva, 2018).

The latest advancements in RL have paved the way for the deployment of models.

These models have greatly assisted in dealing with continuous action spaces, which is

crucial in stock trading. DDPG is a learning technique that makes use of deterministic

policies, whereas PPO is the methodology that brings about practical solutions. Both

are considered the most advanced applications for trading strategy optimization in real

business environments around the world. One example is the Palm device, which can

act as a modem, and at the same time, users can enjoy the hardware add-on functions.

Another potential application is the use of cellular telephones as satellite models. For

stock trading, this is an insight that will hopefully help to change the game.

To sum up, the evolution of algorithmic trading has not only brought AI models

to the next level. The synergy of sentiment analysis, reinforcement learning, and more

advanced ways of dealing with risk and transaction costs have profoundly increased the

capabilities of these systems, although traditional benchmarks like the BH strategy

continue to be.

2.7 Deep Reinforcement Learning for Stock Trading

Reinforcement Learning and its advanced extension, Deep Reinforcement

Learning, have become pivotal in the financial industry, particularly in stock trading,

where the automation of decision-making processes is highly desirable. Traditional ML

methods in stock trading typically focus on making price or trend predictions, which

are then implemented into rule-based systems to guide trading actions. However, this

approach is limited as it often needs to pay more attention to several critical aspects of

market behavior, such as liquidity and transaction costs. The introduction of DRL

marks a significant improvement, as it automates decision-making by identifying the

essential rules that define effective trading strategies in a data-driven way.

One key advantage of DRL over traditional ML models is its ability to operate

without predefined rules for executing trades. Instead, DRL models learn optimal

strategies directly from the data by experimenting with different actions and adjusting

to new market conditions. This is particularly useful in volatile financial markets, where

price fluctuations, liquidity issues, and other market conditions evolve rapidly. As a

result, DRL systems can automate trading by incorporating market predictions and

23

decision-making processes. In contrast, conventional ML systems rely on rule-based

mechanisms for executing trades.

Another notable advantage of using DRL for stock trading is its ability to

optimize reward functions. Unlike traditional models that may focus on maximizing

returns without considering other factors, DRL models can be designed to include

essential market aspects such as transaction costs, market liquidity, and risk aversion

(Fischer & Krauss, 2018). This flexibility allows traders to tailor their reward functions

to align with their specific trading goals, such as maximizing risk-adjusted returns or

minimizing drawdowns. In doing so, DRL models offer a holistic approach to trading

by accounting for the interplay between short-term gains and long-term risks.

The foundations of RL and DRL lie in their ability to make sequential decisions

by interacting with an environment. RL models rely on agents interacting with their

environment, gathering information, and selecting actions to maximize cumulative

rewards over time. Unlike supervised learning models, RL agents are not trained on

labeled data but instead learn by trial and error. This approach is well-suited for stock

trading, where agents must continually update their decisions based on ever-changing

market conditions. Agents gradually learn which actions yield the best outcomes by

experimenting with different strategies.

In RL, several key components must be considered: the agent, the environment,

the state space, the action space, the reward function, and the policy. The agent interacts

with the environment, which, in the context of stock trading, represents the financial

markets. The environment’s dynamics constantly change, with factors such as news

events, political developments, and economic indicators affecting market behavior. The

state space represents the agent's possible conditions, such as stock prices, trading

volumes, and other relevant indicators. The action space refers to the potential actions

the agent can take, such as buying, selling, or holding a stock (Vázquez-Canteli &

Nagy, 2019). Each action leads to a new state, and the agent receives a reward based

on the success of that action in maximizing profit or other objectives. The reward

function, therefore, plays a critical role in guiding the agent's behavior, as it defines the

goals the agent is trying to achieve.

The design of the reward function is crucial in financial markets, where actions

can have immediate and long-term consequences. For example, an agent might receive

an immediate reward from a profitable trade but suffer a long-term penalty if that trade

leads to increased risk or future losses. Thus, DRL models are typically designed to

optimize short-term and long-term rewards, considering each decision's impact on

future outcomes.

The concept of policy is also central to RL models. The policy determines the

agent's behavior by mapping states to actions. Policies can be deterministic, where the

agent always takes the same action in each state, or stochastic, where the agent selects

actions based on a probability distribution. Stochastic policies are often preferred in

stock trading, allowing the agent to explore different strategies and avoid becoming

overly reliant on a single approach. Over time, as the agent learns which actions lead to

the best outcomes, the policy is updated to reflect the agent's improved understanding

of the environment.

The evolution of RL into DRL, facilitated using deep neural networks, has

significantly expanded the capabilities of these models. While traditional RL models

were limited by their reliance on handcrafted features and small state and action spaces,

24

DRL models can handle much more complex environments, making them particularly

suitable for financial markets. Deep neural networks enable DRL agents to

automatically extract relevant features from raw market data, eliminating the need for

manual feature engineering. This capability is critical in stock trading, where various

factors influence markets, including historical prices, technical indicators, and

sentiment data.

One of the seminal contributions to DRL was the development of the DQN, which

extended Q-learning to continuous state spaces. DQN introduced several key

innovations, including experience replay and target networks, which helped stabilize

the learning process and improved performance in real-world applications (Mnih et al.,

2015). Experience replay allows the agent to store and reuse past experiences, reducing

the correlation between consecutive updates and making learning more efficient. On

the other hand, target networks help prevent the agent from overfitting to recent

experiences by maintaining a separate network that provides more stable estimates of

the value function.

DQN has been successfully applied to stock trading, where it has demonstrated

superior performance compared to traditional strategies such as the buy-and-hold (BH)

strategy. For example, in experiments conducted on stock market indices like the Hong

Kong HSI and the U.S. SP500, DQN-based agents outperformed both the BH and RRL

agents regarding cumulative returns and Sharpe ratios. However, despite its success,

DQN has limitations. One of the key challenges is that it relies solely on daily closing

prices, which may only capture some relevant market information. Additionally, DQN

assumes that actions are discrete, which can be limiting in financial markets where

actions, such as trade sizes, are often continuous.

Advantage Actor-Critic is a prominent actor-critic algorithm that enhances policy

gradient methods by incorporating an advantage function to stabilize and improve

learning efficiency. In stock trading, A2C is a crucial component in ensemble strategies

by simultaneously training separate actor and critic networks. Based on the current

market state, the actor-network is responsible for selecting the optimal trading

actions—such as buying, selling, or holding a stock. At the same time, the critic

network evaluates these actions by estimating the advantage function. The advantage

function measures how much better a chosen action is compared to the average action

in each state, reducing the variance in policy updates and leading to more reliable and

robust trading strategies. Figure 2-10 shows the process of the Actor-Critic.

25

FIGURE 2-10 The Actor-Critic Process

One of the significant strengths of A2C lies in its ability to leverage multiple

parallel agents that interact with the trading environment independently. Each agent

explores different parts of the state and action spaces, gathering diverse experiences

that contribute to the learning process. After a set of interactions, the gradients

computed by each agent are aggregated and used to update the global actor and critic

networks. This parallelism not only accelerates the training process but also enhances

the diversity of the training data, making the model more adaptable to varying market

conditions. Additionally, by using synchronous updates, A2C ensures that the learning

process remains stable and efficient, even when dealing with large batches of data

typical in financial markets.

The objective function for A2C is:

∇𝐽𝜃(𝜃) = 𝔼[∑ ∇𝜃𝑙𝑜𝑔𝜋𝜃(𝑎𝑡|𝑠𝑡)𝐴(𝑠𝑡|𝑎𝑡)𝑇
𝑡=1] (2-4)

Where 𝜋𝜃(𝑎𝑡|𝑠𝑡) is the policy network, 𝐴(𝑠𝑡|𝑎𝑡) is the advantage function can

be written as:

𝐴(𝑠𝑡, 𝑎𝑡) = 𝑄(𝑠𝑡, 𝑎𝑡) − 𝑉(𝑠𝑡) (2-5)

Or

𝐴(𝑠𝑡, 𝑎𝑡) = 𝑟(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡) (2-6)

In practical applications, A2C has demonstrated its effectiveness in developing

sophisticated trading strategies that account for both short-term gains and long-term

risks. By optimizing the reward function to include factors such as transaction costs,

market liquidity, and risk aversion, A2C enables the creation of trading models that are

profitable and resilient to market volatility. The actor-critic architecture allows the

model to continuously refine its policy based on real-time feedback from the market,

26

ensuring that the trading decisions remain aligned with the desired financial objectives.

This adaptability and robustness make A2C an excellent choice for stock trading, where

the ability to respond to rapidly changing market dynamics is essential for sustained

success.

Recent studies have demonstrated the practical applicability of A2C in stock

trading environments. For instance, a conceptually simple, lightweight framework for

deep reinforcement learning (Mnih et al, 2016) uses asynchronous gradient descent to

optimize deep neural network controllers. Researchers present asynchronous variants

of four standard reinforcement learning algorithms and show that parallel actor-learners

stabilize training, allowing all four methods to train neural network controllers

successfully. The best-performing method, an asynchronous variant of actor-critic,

surpasses the current state-of-the-art on the Atari domain while training for half the

time on a single multi-core Central processing unit (CPU) instead of a GPU.

Furthermore, the asynchronous actor-critic succeeds on various continuous motor

control problems and on a new task of navigating random 3D mazes using a visual

input.

FIGURE 2-11 Illustration of general actor-critic models

To address the limitations of DQN, researchers developed the DDPG model,

which extends the Q-learning framework to continuous action spaces. DDPG uses an

actor-critic architecture, where the actor-network determines the best action to take, and

the critic network evaluates the quality of that action by estimating the expected return.

The illustrates the DRL models’ general components, describing specific components

of the actor-critic methods in Figure 2-11. This approach allows DDPG to handle the

continuous nature of trading actions, such as varying trade sizes or adjusting portfolio

allocations. The use of deep neural networks in actor and critic networks enables DDPG

to learn complex trading strategies previously out of reach for traditional RL models.

27

DDPG has demonstrated superior performance in stock trading applications

compared to traditional strategies and earlier DRL models. However, it does come with

certain limitations. One of the main challenges is that DDPG can overfit, especially

when dealing with noisy or highly volatile markets. To address this, techniques like

experience replay and target networks are employed. These methods help stabilize the

learning process, preventing the model from becoming overly reliant on recent

experiences and making it more robust.

Building on the strengths of DDPG, PPO, shown in Figure 2-12, was developed,

which introduced improvements to the actor-critic framework. PPO uses a more stable

policy gradient approach, ensuring that the policy is updated gradually to avoid drastic

changes, which can be problematic in volatile market conditions. It also includes a

surrogate objective function that discourages extensive policy updates, promoting more

stable exploration and strategy development. This makes PPO particularly suitable for

financial markets, where sudden shifts in trading strategies can lead to significant risks

or losses.

The policy gradient theorem is foundational for algorithms shown in (2-7):

∇𝜃𝐽(𝜃) = Ε[∇𝜃 log 𝜋𝜃 (𝑎/𝑠)𝑄𝜋(𝑠/𝑎)] (2-7)

where:

𝜃 are the parameters of the policy 𝜋𝜃(𝑎/𝑠)

𝐽(𝜃) is the expected reward objective function.

𝑄𝜋(𝑠, 𝑎) is the action-value function under policy π.

FIGURE 2-12 Illustration of the PPO model

PPO has been applied successfully in stock trading, demonstrating faster

convergence and more stable performance than DDPG. In a study on 30 liquid stocks

28

from the Dow Jones Industrial Average, a PPO-based trading system achieved a

cumulative return of 70.4%, compared to 38.6% for the BH strategy (Yang et al., 2020).

Additionally, PPO was found to have lower volatility and a higher Sharpe ratio than

traditional strategies, making it an attractive option for traders looking to balance

returns with risk. Despite its advantages, PPO still needs help in highly volatile markets,

where the need for frequent policy updates can limit its effectiveness.

As DRL models evolve, researchers have begun exploring ensemble methods

combining multiple agents to create more robust trading systems. Ensemble methods

leverage the strengths of different DRL models, such as the fast convergence of PPO

and the ability of DDPG to handle continuous action spaces, to improve overall

performance. In stock trading, ensemble methods have been shown to enhance

cumulative returns, reduce volatility, and increase the Sharpe ratio compared to single-

agent systems. Furthermore, ensemble methods can help mitigate the risk of overfitting

by allowing agents to explore different strategies simultaneously and select the best-

performing ones.

Another active research area in DRL for stock trading is integrating risk

management into the reward function. Traditional DRL models often focus solely on

maximizing returns, but this approach can lead to excessive risk-taking, particularly in

volatile markets. Researchers have begun incorporating risk-aware objectives, such as

minimizing drawdowns or maximizing risk-adjusted returns, into the reward function

to address this. By doing so, DRL agents can learn to balance the trade-off between risk

and reward, making them more suitable for real-world trading applications where risk

management is crucial.

Despite the significant advancements in DRL for stock trading, several challenges

remain. One of the main issues is the need for more interpretability in DRL models,

which makes it difficult for human traders to understand and trust the decisions made

by these agents. This is particularly problematic in financial markets, where

transparency and accountability are essential. Another challenge is that many DRL

models are tested in simulated environments, which may not accurately reflect the

complexities of real-world markets. As a result, DRL agents may perform well in

simulations but struggle when exposed to live trading conditions.

To address these challenges, future research should focus on improving the

interpretability of DRL models and developing more realistic market simulations.

Additionally, there is a growing need for DRL models that can adapt to changing market

conditions in real time and incorporate external factors such as news sentiment or

macroeconomic indicators into their decision-making process. By addressing these

challenges, DRL can potentially revolutionize stock trading and other areas of finance,

offering traders more sophisticated and adaptive tools for navigating complex markets.

In conclusion, the development of RL and DRL for stock trading has made

significant strides over the years, evolving from early rule-based systems to advanced

models capable of learning directly from raw market data. While there are still

challenges to overcome, such as model interpretability and the inclusion of real-world

factors, the potential benefits of DRL in the financial domain are undeniable. Future

research should continue exploring the integration of risk management into DRL

models, the use of ensemble methods, and the development of more realistic market

simulations to improve the applicability of these models in live trading environments.

29

2.8 Dynamic Allocation

A key component of investing strategy is asset allocation, which involves

allocating an investor's capital across several asset classes, such as cash, bonds, and

stocks, to balance risk and return in accordance with their investment horizon, risk

tolerance, and financial objectives. The main goal is to attain optimal returns while

minimizing potential losses from any asset class through diversification of investments.

Building on this basis, investors can use a customized strategy called Volatility-

Based Allocation. In this investment strategy, investors adjust how much money they

put into risky assets based on how much the market is fluctuating. When the market is

calm and not very volatile, investors allocate more funds to risky investments because

the conditions seem stable and favorable. Conversely, when the market is shaky and

highly volatile, they reduce their investments in risky assets to minimize potential

losses. This approach aims to balance the chances of making good returns while

controlling the risks by responding to changing market conditions.

A study explored how ANNs, which are advanced computer programs, can

predict market volatility more accurately. Their goal was to improve an asset allocation

strategy that maintains a specific level of risk, known as target volatility. The strategy

works by dynamically shifting investments between a risky asset, like stocks, and a

risk-free asset, such as cash. One challenge they faced was the limited availability of

high-volatility data because extreme market swings, like those during financial crises,

don’t happen often. To overcome this, they compared current high-volatility periods

with past low-volatility data to have more information for their models. They tested

their ANN-based approach against traditional methods like the volatility index,

historical volatility, exponentially weighted moving average (EWMA), and the

GARCH model. Their results showed that the ANN method performed better in

forecasting volatility, which helped in making more informed investment decisions.

They conducted their study using data from the Korea Composite Stock Price Index

200 (KOSPI 200) and certificate of deposit interest rates from January 2006 to February

2016 (Kim & Enke, 2016). In this study, the weight of equity in the portfolio is

calculated by Eq. (2-8), where �̂�𝑡
𝑒𝑞𝑢𝑖𝑡𝑦

is an estimate of the volatility of equity returns,

and 𝜎
𝑡𝑎𝑟𝑔𝑒𝑡

is the target volatility, applied between time t and the next rebalancing time,

t + 1.

𝑤𝑡
𝑒𝑞𝑢𝑖𝑡𝑦

= min (
𝜎𝑡𝑎𝑟𝑔𝑒𝑡

�̂�𝑡
𝑒𝑞𝑢𝑖𝑡𝑦 , 100%) (2-8)

Some parameters are needed to implement the target volatility strategy. These

include the volatility target, the computation of current volatility, the maximum

leverage amount, and the rebalancing frequency. However, the maximum weight of

equity is restricted to a constraint (i.e., no leverage) since the objective of this study is

to use ANNs for volatility forecasting to enhance the ability of an asset allocation

strategy based on the target volatility.

Another important study reviewed various ML models used in the financial

sector, focusing mainly on predicting stock prices and managing portfolios. They found

that traditional models like ARIMA (Auto Regressive Integrated Moving Average) and

exponential smoothing didn’t perform as well as DL models when it came to predicting

stock prices and volatility. This is because financial data is often complex, has high

30

dimensions, and changes dynamically over time. Among the DL models, LSTM

networks were particularly effective, outperforming other methods like SVM and MLP.

However, DRL was used less frequently than these models. Conclude that DL models

offer significant advantages for financial predictions due to their ability to handle

intricate data patterns.

These studies highlight the growing importance of using advanced computer

models, such as neural networks and deep learning, to improve volatility forecasting

and asset allocation strategies. By better predicting how volatile the market will be,

investors can make more informed decisions about where to allocate their money,

aiming to achieve higher returns while managing risks effectively. As technology and

data analysis techniques advance, these methods will become even more integral to

successful investment strategies.

2.9 Economic Analysis

2.9.1 Return on Investment (ROI)

ROI is a fundamental financial metric used to evaluate the efficiency or

profitability of an investment. It measures the return relative to the investment's cost,

providing a straightforward way to assess the effectiveness of various investments. A

study discusses ROI's simplicity and versatility, demonstrating its applicability beyond

traditional financial investments to marketing campaigns, project management, and

human resources. Their work emphasizes how ROI facilitates decision-making by

providing a clear metric for comparing the profitability of different initiatives. Over the

years, enhancements to ROI calculations have been introduced to incorporate the time

value of money, leading to more sophisticated metrics like Return on Invested Capital

(ROIC) and Economic Value Added (EVA). These advancements have allowed

businesses to better understand their investment returns by accounting for factors such

as capital costs and economic profit. Additionally, the integration of data analytics has

enabled more dynamic and real-time ROI assessments, allowing for more accurate and

timely investment evaluations (Brigham & Ehrhardt, 2013). This foundational

understanding underscores ROI's enduring relevance as a critical strategic planning and

operational management tool. The ROI is calculated by (2-9):

𝑅𝑂𝐼 = (
𝑁𝑒𝑡 𝑃𝑟𝑜𝑓𝑖𝑡

𝐶𝑜𝑠𝑡 𝑜𝑓 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡
) × 100% (2-9)

A higher ROI indicates a more profitable investment, making it a valuable tool

for comparing investment opportunities.

2.9.2 Drawdown

Drawdown is a risk metric that quantifies the decline from a portfolio's peak value

to its lowest point over a specific period. It provides insight into the potential loss an

investment might experience, helping investors understand the risk involved. The

drawdown is calculated using the following equation:

𝐷𝑟𝑎𝑤𝑑𝑜𝑤𝑛 = (
𝑃𝑒𝑎𝑘 𝑉𝑎𝑙𝑢𝑒−𝑇𝑟𝑜𝑢𝑔ℎ 𝑉𝑎𝑙𝑢𝑒

𝑃𝑒𝑎𝑘 𝑉𝑎𝑙𝑢𝑒
) × 100% (2-10)

Drawdown (Magdon-Ismail & Atiya, 2004) is crucial for assessing the downside

risk and the emotional resilience investors require to withstand market volatility. It has

31

been extensively studied as a critical measure of investment risk, particularly in

portfolio management and behavioral finance. A study integrates drawdown metrics

into portfolio optimization, highlighting the importance of minimizing potential losses

to enhance long-term investment stability. Bailey and colleagues demonstrate that by

incorporating drawdown considerations, investors can develop trading strategies that

aim for high returns and effectively manage and mitigate significant losses during

market downturns. Their research underscores drawdown's role in understanding and

controlling investment risks, thereby improving portfolio resilience. Additionally,

advancements in computational methods have allowed for more precise drawdown

analyses, such as calculating maximum and average drawdown over rolling periods.

This comprehensive approach to drawdown assessment has reinforced its significance

in constructing robust investment portfolios, ensuring that investors are better prepared

to handle adverse market conditions.

While drawdown measures any decline from a portfolio's peak to its trough,

maximum drawdown focuses on the largest such decline over a specific period. It

represents the most significant loss an investment could incur, providing critical insight

into its risk profile. The maximum drawdown is calculated by identifying the most

considerable drawdown among all peak-to-trough declines during the period:

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐷𝑟𝑎𝑤𝑑𝑜𝑤𝑛 = max {(
𝑃𝑒𝑎𝑘 𝑉𝑎𝑙𝑢𝑒−𝑇𝑟𝑜𝑢𝑔ℎ 𝑉𝑎𝑙𝑢𝑒

𝑃𝑒𝑎𝑘 𝑉𝑎𝑙𝑢𝑒
) × 100%} (2-11)

For instance, if a portfolio experiences several drawdowns 5%, 8%, 15%, and 7%

over a year, the maximum drawdown is 15%. This figure is crucial for investors as it

indicates the worst possible loss they might face, enabling them to gauge their risk

tolerance and adjust their investment strategies accordingly.

2.9.3 Sharpe Ratio

The Sharpe Ratio is a widely used measure of risk-adjusted return, developed by

Nobel laureate William F. Sharpe. It assesses how much excess return an investment

generates per unit of risk, allowing investors to compare the performance of different

portfolios or assets. The Sharpe Ratio is calculated using the following equation:

𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝑅𝑝− 𝑅𝑓

𝜎𝑝
 (2-12)

where:

𝑅𝑝 is the return of the portfolio.

𝑅𝑓 is the risk-free rate.

𝜎𝑝 is the standard deviation of the portfolio's excess return.

A higher Sharpe Ratio indicates a more favorable risk-adjusted return, making it

a crucial tool for portfolio optimization and performance evaluation. In this influential

work, Sharpe presented the ratio to evaluate the performance of mutual funds by

comparing their excess returns to the volatility of those returns. This metric became

essential in the rise of modern portfolio theory and quantitative finance, providing a

standardized method for assessing risk-adjusted returns across diverse investment

strategies. Sharpe's analysis demonstrated that the ratio effectively captures the trade-

off between risk and return, enabling investors to make more informed decisions when

selecting and managing portfolios. Over the decades, the Sharpe Ratio has been

32

extensively validated and refined, addressing its initial limitations and expanding its

applicability to various asset classes, including equities, bonds, and alternative

investments like cryptocurrencies and ESG-focused funds (Sharpe, 1966) Its enduring

relevance is evident in academic research and practical investment management, where

it continues to guide portfolio optimization and comparative performance analysis.

2.9.4 Calmar Ratio

A performance metric that evaluates the return of an investment relative to its

maximum drawdown, providing insight into the risk-adjusted return over a specified

period. It is beneficial for assessing the performance of hedge funds and managed

portfolios. The Calmar Ratio is calculated using the following equation:

𝐶𝑎𝑙𝑚𝑎𝑟 𝑅𝑎𝑡𝑖𝑜 =
Annualized Return

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐷𝑟𝑎𝑤𝑑𝑜𝑤𝑛
 (2-13)

where:

Annualized Return is the compounded annual growth rate of the investment.

Maximum Drawdown is the largest peak-to-trough decline during the investment

period.

A higher Calmar Ratio indicates a more favorable balance between return and

downside risk, making it a valuable tool for investors focused on capital preservation

and consistent performance. Some work emphasized the ratio's ability to capture the

balance between an investment's return and its worst-case scenario loss, making it

especially relevant during market instability. The Calmar Ratio effectively

differentiates between high-performing funds with manageable drawdowns and those

with similar returns but greater risk exposure, providing investors with a clear metric

for assessing growth and risk (Magdon-Ismail & Atiya, 2004). Research demonstrated

that incorporating the Calmar Ratio into portfolio evaluation frameworks enhances the

ability to construct portfolios that maximize returns while minimizing potential losses.

Additionally, the metric has been widely adopted in evaluating algorithmic trading

strategies and various asset classes, including equities, commodities, and

cryptocurrencies, reflecting its versatility in modern investment landscapes.

Advancements in financial modeling have further improved the accuracy and real-time

applicability of the Calmar Ratio, reinforcing its role as a vital tool for investors

prioritizing both growth and the mitigation of significant losses.

The review of related works reveals a clear opportunity to leverage advanced

DRL models in portfolio management, particularly within emerging markets such as

the SET. Chapter 3 introduces the methodology for developing a customized DRL

trading environment and optimizing agent performance to meet these unique

challenges.

33

CHAPTER 3

METHODOLOGY AND EXPERIMENT

Having established the theoretical foundation and identified the research gap,

Chapter 3 outlines the methodology for developing a deep reinforcement learning

(DRL) model for dynamic portfolio management on the Stock Exchange of Thailand

(SET). The chapter begins with an Overview of Model Architecture (Section 3.1),

outlining the frameworks of Proximal Policy Optimization (PPO), Advantage Actor-

Critic (A2C), and Deep Q-Network (DQN). Data Preparation (Section 3.2) and Data

Preprocessing (Section 3.3) detail the selection and transformation of stock data,

followed by Hyperparameter Analysis (Section 3.4), which fine-tunes key parameters

to enhance model stability. Sections 3.5 and 3.6 cover the Actor-Critic network

structures and DQN implementation, respectively, explaining the technical foundations

of each model. Model Training (Section 3.7) describes the learning process of these

agents. In contrast, Testing and Evaluation (Section 3.8) assesses performance using

metrics like ROI and Sharpe Ratio, providing insights into the models' profitability and

risk management capabilities. This methodology framework sets the stage for a robust

DRL-based trading model tailored to SET’s market conditions.

3.1 Overview of Model Architecture

The model architecture for developing a deep reinforcement learning (DRL)-

based trading system, shown in FIGURE 3-1, is designed in three main stages: Data

Collection, Data Preprocessing, and Deep Reinforcement Learning Model

Implementation. These stages work together to facilitate the learning and execution of

trading strategies optimized for profitability and risk management on a selected

portfolio of stocks in the Stock Exchange of Thailand (SET).

Stage 1: Data Collection

In the first stage, a portfolio of 10 representative stocks is selected based on

market significance, liquidity, and sector diversity criteria. Each stock is represented by

its historical data, including daily price movements, which provide the foundational

input for the model. These data points serve as raw inputs, capturing trends, volatility,

and individual stock behavior, which is essential for building a robust and

representative dataset.

Stage 2: Data Preprocessing

Data preprocessing transforms the raw stock data into formats suitable for

training the DRL model. This step includes two primary processes: Normalization and

Feature Engineering. Normalization involves converting price changes into percentage

changes, making the data comparable across stocks. A Volume-Weighted Average

Price (VWAP) feature is also calculated to capture short-term price trends and enhance

the model's understanding of price movements. After feature engineering, a Standard

Scaler is applied to standardize the dataset, ensuring that features are scaled

consistently, which is crucial for stable and practical model training.

Stage 3: Deep Reinforcement Learning Model Implementation

34

The core of the architecture is the DRL model, where Trading Agents interact

with a simulated environment that mimics the stock market. The trading agents—

implemented using algorithms such as TDQN (Target Deep Q-Network), A2C

(Advantage Actor-Critic), and PPO (Proximal Policy Optimization)—are responsible

for making buy, sell, or hold decisions based on the observations from the environment.

The environment provides real-time data on raw prices, engineered features (like

VWAP), and close prices and calculates rewards based on profit or loss after each action

the agent takes.

FIGURE 3-1 Overview of Model Architecture

Each trading agent operates in a feedback loop with the environment. The agent

observes the current state, performs an action (e.g., buying or selling a stock), and

receives a reward based on the outcome of that action. This reward feedback guides the

agent’s learning, reinforcing profitable strategies while discouraging unprofitable ones.

Over time, the agents learn to optimize their trading policies through continuous

interaction with the environment, aiming to maximize cumulative rewards in alignment

with market conditions.

This multi-stage architecture, combining data processing with DRL agents,

allows for an adaptive and data-driven trading approach, leveraging historical trends

and real-time decision-making capabilities. Through this setup, the model aims to

produce trading strategies that can dynamically respond to SET’s unique market

conditions, providing a balance between profitability and risk management.

This study utilizes a dataset of ten stocks: ADVANC, AOT, BDMS, CPN,

INTUCH, IVL, MINT, PTTEP, TISCO, and SCC Exploration. These stocks were

selected due to their significant market presence, high trading volumes, and potential

for substantial returns. The dataset spans from January 1, 2017, to June 1, 2023,

providing ample historical data for the Model Overview shown in Figure 3-1.

3.2 Data Preparation

The preprocessing step in the methodology involves handling missing values and

then transforming raw stock data into percentage changes, which is a part of feature

engineering—selecting a diverse portfolio of stocks spanning several vital economic

sectors, including Telecommunications, Aviation, Healthcare, Real Estate, Energy/Oil

35

& Gas, Financial Services, Hospitality/Retail, Industrials/Cement, and

Chemical/Textiles. This strategic diversification across different industries is designed

to optimize the portfolio’s performance and enhance its robustness. By investing in

various sectors, the portfolio can better withstand sector-specific downturns, capitalize

on growth opportunities in multiple areas, and achieve a balanced risk-return profile.

This approach mitigates risks associated with market volatility and leverages each

sector's unique strengths and growth potentials, ensuring sustained and stable

investment growth.

3.2.1 Advanced Info Service PCL (AIS)

Listed under the ticker symbol ADVANC, AIS is Thailand's largest mobile phone

operator. It provides various telecommunications services, including mobile networks,

broadband internet, and digital solutions. As a leading company in the SET50, AIS

holds a significant market share in the Thai telecommunications industry, a critical

sector for the country's economic infrastructure.

The stock is a critical component of the SET50 index, representing a considerable

portion of the market capitalization within the telecommunications sector. AIS's

consistent performance is reflected in its vital financial metrics, including a high market

capitalization, robust earnings growth, and attractive dividend yield. The company's

stock is known for its liquidity and is frequently traded by domestic and international

investors.

Strategically, AIS is focused on expanding its 5G network and enhancing digital

services, positioning itself to capitalize on Thailand's growing demand for connectivity.

With a forward-looking approach, AIS will likely maintain its industry leadership.

3.2.2 Airports of Thailand PCL (AOT)

AOT is the foremost airport operator in Thailand, overseeing key international

airports such as Suvarnabhumi and Don Mueang. AOT plays an indispensable role in

the Thai economy, particularly within the tourism and transportation sectors, making it

a pivotal entity in driving the country’s economic activities. The company’s efficient

airport operations management significantly boosts Thailand’s tourism industry, a

significant contributor to the national GDP.

It is a significant constituent of the SET50 index, reflecting its large market

capitalization and the critical nature of its services. The company's financial

performance is robust, supported by steady growth in passenger numbers and aircraft

movements, contributing to its revenue stability. The stock is favored for its defensive

qualities, offering resilience in market volatility and attracting domestic and foreign

investors.

Looking ahead, AOT aims to expand airport infrastructure to accommodate future

passenger growth. The company's investment plans include upgrading existing

facilities and enhancing service efficiency, which will help solidify its market position

and maintain its substantial influence.

3.2.3 Bangkok Dusit Medical Services PCL (BDMS)

Thailand's leading healthcare provider operates a network of hospitals and

medical facilities nationwide. BDMS offers various medical services, including

specialized treatments, diagnostics, and wellness programs. The company benefits from

Thailand's growing healthcare demand, driven by local and international patients

seeking high-quality medical care. BDMS exhibits robust financial performance with

consistent revenue growth, strong profit margins, and a solid dividend history. The

36

stock is attractive to investors due to the essential nature of healthcare services and the

company's reputation for excellence. BDMS is focused on expanding its service

offerings, enhancing patient care technologies, and exploring international markets to

sustain its growth trajectory.
3.2.4 Central Pattana PCL (CPN)

CPN is a leading real estate developer specializing in developing and managing

retail properties, office buildings, and residential projects. CPN is renowned for its

high-quality shopping malls, such as CentralWorld and CentralPlaza, major

commercial hubs attracting millions of visitors annually. The company boasts strong

financial metrics, including substantial revenue from property sales and rentals, healthy

profit margins, and consistent dividend payouts. Investors favor CPN's stock for its

stable income and growth potential driven by Thailand's expanding urbanization and

consumer spending. The company is committed to sustainable development, innovative

property solutions, and strategic acquisitions to enhance its portfolio and market

presence.

3.2.5 Intouch Holdings PCL (INTUCH)

A major player in Thailand's telecommunications and digital services landscape.

The company provides a wide range of services, including mobile communications,

digital media, and fintech solutions. Intouch has established a strong market presence

through continuous innovation and strategic partnerships. Financially, the company

showcases solid revenue growth, healthy profit margins, and a reliable dividend payout,

making it an attractive option for investors seeking stability and development in the

tech sector. Intouch is committed to advancing its digital infrastructure and expanding

its service offerings, positioning itself well to capitalize on Thailand's increasing

demand for digital transformation.

3.2.6 Indorama Ventures Ltd (IVL)

Specializing in the production of polyester, petrochemicals, and related products.

IVL operates an extensive network of manufacturing facilities and distribution channels

across multiple continents, making it a significant player in the global textiles and

chemical industries. The company exhibits financial solid performance with robust

revenue growth, efficient production processes, and healthy profit margins. IVL's stock

is attractive to investors due to its global reach, diversified product portfolio, and

consistent dividend payouts. The company is committed to expanding its production

capacities, investing in sustainable and environmentally friendly technologies, and

exploring new markets to drive future growth and maintain its competitive edge.

3.2.7 Minor International PCL (MINT)

Operating a diverse portfolio of hotels, resorts, restaurants, and retail stores.

MINT owns well-known brands such as Minor Hotels, The Pizza Company, and Sushi

Samba. The company's extensive global presence allows it to tap into international

markets, driving revenue growth and brand recognition. MINT demonstrates solid

financial performance with steady revenue streams from its hospitality and retail

operations, healthy profit margins, and a solid dividend policy. The stock is attractive

to investors due to the company's resilience and growth potential in the dynamic

hospitality and consumer sectors. MINT is committed to expanding its global footprint,

enhancing customer experiences, and diversifying its brand portfolio to capitalize on

emerging market trends and consumer preferences.

37

3.2.8 PTT Exploration and Production PCL (PTTEP)

PTTEP is a crucial player in Thailand’s energy sector, specializing in oil and

natural gas exploration and production. PTTEP's operations are vital for securing

Thailand’s energy supply, and its activities span both domestic and international

territories. The company’s contributions are essential to the nation’s energy security

and economic stability, providing a significant portion of its energy needs.

It is an essential component of the SET50 index, representing the energy sector's

substantial contribution to the Thai economy. The company’s financial performance is

characterized by its strong revenue streams and profitability, supported by successful

exploration projects and production efficiency. Stock is highly regarded for its steady

dividends and potential for capital appreciation, making it a preferred choice for

investors seeking exposure to the energy sector.

PTTEP is committed to expanding its exploration and production activities,

particularly in high-potential areas, while investing in sustainability initiatives. The

company’s focus is on operational efficiency and environmental responsibility

positions.

3.2.9 TISCO Financial Group PCL (TISCO)

A prominent player in Thailand's financial services sector. The company offers

various financial products and services, including banking, asset management, and

securities brokerage. TISCO is known for its strong market presence, innovative

financial solutions, and customer-centric approach. The company exhibits solid

financial health, consistent revenue growth, strong asset quality, and attractive

profitability ratios. TISCO's stock is appealing to investors seeking exposure to the

financial sector, offering both growth potential and dividend income. The company is

focused on expanding its digital banking services, enhancing customer experience, and

exploring new financial technologies to stay competitive in a rapidly evolving market.

3.2.10 Siam Cement Group (SCC)

It is one of Thailand’s largest and most diversified industrial conglomerates, with

operations spanning cement production, building materials, chemicals, and packaging.

SCC plays a critical role in Thailand's infrastructure development and industrial growth.

The company boasts strong financials, including substantial revenue from its diverse

business segments, solid profit margins, and consistent dividend payments. Investors

favor SCC's stock for its stability, diversified revenue streams, and growth prospects

driven by ongoing infrastructure projects and industrial demand. The company is

focused on innovation, sustainable practices, and strategic acquisitions to enhance its

product offerings and expand its domestic and international market presence.

3.3 Data Preprocessing

Effective data preprocessing is crucial for the success of machine learning

models, particularly in the context of financial data, where noise and variability are

prevalent. This section outlines the comprehensive preprocessing pipeline applied to

the raw stock data to prepare it for modeling with the RL agent.

3.3.1 Data Retrieval

The initial step involves acquiring historical stock data using the Yahoo Finance

API via the yfinance library. For each stock symbol, daily data encompassing the

following attributes is retrieved:

Open: The price at which the stock opened at the beginning of the trading day.

38

High: The highest price reached during the trading day.

Low: The lowest price reached during the trading day.

Close: The price at which the stock closed at the end of the trading day.

Volume: The number of shares traded during the trading day.

3.3.2 Missing Value Handling

Financial datasets often need more value due to various reasons, such as market

holidays or data transmission issues. To ensure data integrity and model reliability,

missing data points are handled through the following approaches:

Removal of Missing Data: Rows with missing values are dropped to prevent the

introduction of bias or errors during model training.

3.3.3 Feature Engineering:

A key feature engineered in this process is the Volume-Weighted Average Price,

calculated over a 14-day window to capture short-term price trends.

Percentage Change Calculation: The raw stock data is transformed into

percentage changes to normalize the values and focus on relative price movements

rather than absolute prices. The formula used was:

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐶ℎ𝑎𝑛𝑔𝑒 = (
𝐶𝑙𝑜𝑠𝑒𝑡−𝐶𝑙𝑜𝑠𝑒𝑡−1

𝐶𝑙𝑜𝑠𝑒𝑡−1
) × 100% (3-1)

The result after calculation show in Figure 3-2

FIGURE 3-2 Illustration data after Feature Engineering

Normalization: The percentage changes are further normalized by dividing by

the maximum value to standardize the data across different stocks show in Figure 3-3.

39

FIGURE 3-3 Illustration data after Normalization

After that, the StandardScaler was created and applied to these features using the

fit transform method. This method calculates each feature's mean and standard

deviation and scales them to have a mean of zero and a standard deviation of one.

The scaled features are converted back into a pandas Data Frame, ensuring that the

original feature names are retained for clarity. The unscaled 'Close_Price' column is

added to this Data Frame to preserve the actual closing prices for plotting or future

reference. By standardizing the features, the code ensures that all variables contribute

equally to the model training process, particularly important for algorithms sensitive to

input data's scale. This step enhances the performance and convergence speed of the

machine learning models used later in the pipeline.

3.3.4 Training and Testing Split

The preprocessed dataset is divided into training and testing sets to evaluate the

model's performance and generalization capability. A common practice is employed,

allocating 70% of the data for training and the remaining 30% for testing. This split

ensures that the model is trained on a substantial portion of the data while retaining

enough data to assess its performance in unseen market conditions.

3.3.5 Data Visualization

Visualizing the processed data aids in understanding the underlying patterns and

verifying the effectiveness of preprocessing steps. Specifically, plotting the

Close_Price for training and testing sets provides insights into price trends and volatility
shown in Figure 3-4.

40

FIGURE 3-4 Visualizing data split of Advanced Info Service PCL (AIS)

3.4 Hyperparameter Analysis

Hyperparameters play a pivotal role in the performance and efficiency of machine

learning models. Unlike model parameters learned during training, hyperparameters are

predefined settings that govern the training process. In reinforcement learning,

particularly with the PPO, A2C, and DQN algorithms, selecting appropriate

hyperparameters is essential for achieving optimal policy performance, ensuring

stability during training, and enhancing the agent's ability to generalize across different

market conditions. This section outlines the hyperparameters considered in this study,

the strategies employed for their selection, and the rationale behind the chosen

configurations.

The PPO and A2C algorithms encompass several hyperparameters that influence

their behavior and performance. The key hyperparameters examined in this study

include

3.4.1 Learning Rate (alpha)

Determines the step size at each iteration while moving toward a minimum of the

loss function. It affects how quickly the Actor and Critic networks update their weights.

A higher learning rate can accelerate training but may lead to instability, while a lower

rate ensures more stable convergence but may prolong training time. Set at 0.0003, and

the learning rate dictates the magnitude of updates to the neural network weights during

training. A moderate learning rate ensures the agent learns efficiently without

overshooting optimal policy parameters, maintaining stability throughout training.

3.4.2 Batch Size

The number of samples processed before the model is updated influences the

granularity of updates. Smaller batch sizes can lead to more frequent updates and

potentially faster learning, whereas larger batches provide more stable gradient

estimates. With a batch size of 64, the agent processes 64 experiences during each

training iteration. This size balances computational efficiency and the stability of

gradient estimates, facilitating effective learning without incurring excessive

computational costs.

3.4.3 Number of Epochs

Number of times the entire training dataset is passed through the model during

training. Determines the extent of learning from each batch of data. More epochs can

enhance learning but risk overfitting, especially in dynamic environments like financial

markets. Ten epochs per training cycle allow the agent to iteratively refine its policy

41

and value estimates based on the sampled experiences. This number ensures sufficient

learning from each batch while preventing overfitting to specific subsets of data.

3.4.4 Gamma Discount factor (γ) for future rewards

Balances the importance of immediate versus future rewards. A higher gamma

emphasizes long-term rewards, which is critical for trading strategies aimed at long-

term profitability. The discount factor is set to 0.99, prioritizing long-term rewards and

encouraging the agent to develop strategies that yield sustained profitability.

3.4.5 GAE Lambda (λ)

The weighting factor for Generalized Advantage Estimation (GAE). Controls the

bias-variance trade-off in advantage estimation. It affects how much future rewards are

considered in the advantage calculation. The Generalized Advantage Estimation

parameter is set to 0.95, balancing the trade-off between bias and variance in the

advantage calculations. Together, these hyperparameters ensure that the agent

effectively evaluates the long-term benefits of its actions while maintaining robust

learning dynamics.

3.4.6 Policy Clip

A clipping parameter 0.2 restricts the policy updates within a predefined range,

preventing drastic changes that could destabilize the learning process. This mechanism

ensures that the agent's policy evolves smoothly, maintaining consistency and

reliability in its trading strategies.

3.4.7 Memory Buffer

The memory buffer stores up to 2000 transitions, allowing the agent to sample

diverse experiences and break the correlation between consecutive data points. This

approach enhances the generalization capabilities of the agent, ensuring that it can adapt

to varying market conditions without being biased by specific patterns in the training

data.

The Deep Q-Network algorithm relies on a different set of hyperparameters

tailored to value-based learning. The key hyperparameters for DQN in this study

include:

3.4.8 Epsilon (ε)

Epsilon represents the initial exploration rate in the ε-greedy policy employed by

the DQN agent. This parameter dictates the probability with which the agent will

choose a random action (exploration) as opposed to selecting the best-known action

(exploitation) based on its current Q-value estimates. Setting ε to 1.0 at the outset

ensures that the agent engages in full exploration. This high exploration rate is crucial

during the initial training phases, allowing the agent to gather a diverse set of

experiences across the state-action space. By exploring extensively, the agent can

discover a wide range of potential strategies, which is essential for effective learning in

complex environments where optimal actions are not immediately apparent.

3.4.9 Epsilon End

Epsilon End defines the minimum exploration rate that ε will decay to over the

course of training. This parameter ensures that the agent retains a residual probability

of exploration even after extensive training. By setting 0.01, the agent maintains a small

but non-negligible level of exploration throughout its learning process. This residual

exploration is vital for preventing the agent from becoming trapped in local optima or

suboptimal policies. It allows the agent to occasionally explore new actions that may

42

yield better long-term rewards, thereby enhancing the robustness and adaptability of

the learned policy.

3.4.10 Memory Size

Memory Size specifies the maximum number of experiences (transitions) the

replay buffer can store. The replay buffer is a critical component in DQN, enabling the

agent to sample past experiences for training. A substantial memory size of 100,000

transitions ensures that the agent can access a comprehensive and diverse set of

experiences. This diversity is essential for breaking the temporal correlations between

consecutive data points, which can otherwise lead to inefficient learning and instability

in the training process. By maintaining a large and varied replay buffer, the agent can

generalize better across different states and actions, enhancing its ability to perform

effectively in diverse and dynamic market conditions.

3.4.11 Epsilon Decay

Epsilon Decay determines how the exploration rate ε decreases over time. This

parameter controls how quickly the agent transitions from exploration to exploitation.

A gradual decay rate of 1e-5 ensures a smooth and controlled reduction in ε. This slow

decay allows the agent to continue exploring sufficiently during the early and middle

stages of training while progressively shifting towards exploitation as it gains more

experience and refines its policy. Such a controlled decay helps in balancing the

exploration-exploitation trade-off, enabling the agent to exploit learned strategies

effectively without prematurely abandoning the exploration of potentially better

actions.

3.4.12 Target Network Update Frequency (replace)

Target Network Update Frequency dictates the number of training steps after

which the target network is synchronized with the main Q-network. In DQN, a separate

target network is used to stabilize training by providing consistent Q-value targets.

Updating the target network every 1,000 steps strike an optimal balance between

stability and responsiveness. Frequent updates can lead to oscillations and instability in

Q-value estimates, as the target network rapidly changes in response to the main

network's updates. Conversely, infrequent updates may slow down the learning process,

causing the agent to rely on outdated targets. By setting the update frequency to 1000

steps, the training process benefits from stable and consistent target values, which

facilitates more reliable convergence of the Q-network while still allowing it to adapt

to new information at a reasonable pace.

3.5 Actor and Critic Network

The reinforcement learning frameworks employed in this study, Proximal Policy

Optimization (PPO) and Advantage Actor-Critic (A2C), are meticulously designed to

navigate the high-dimensional state space characteristic of financial markets. PPO is a

state-of-the-art reinforcement learning algorithm that balances performance and

computational efficiency, making it well-suited for complex trading environments. This

section delves into the architecture of the Actor and Critic networks, detailing their

components and the rationale behind their design choices.:

3.5.1 Input Layer:

The state input includes historical stock prices (Open, High, Low, Close), VWAP,

Close Price, and other features.

Seven input features represent each step in the environment at each time.

43

3.5.2 Hidden Layers (Actor and Critic):

The Actor and Critic networks are constructed with two fully connected hidden

layers, each comprising 256 neurons. These hidden layers utilize the Rectified Linear

Unit (ReLU) activation function, which introduces non-linearity into the model,

enabling it to capture complex patterns and dependencies within the financial data. The

depth and width of the hidden layers provide sufficient capacity to model the intricate

relationships inherent in stock market dynamics without leading to overfitting. By

employing ReLU activations, the networks benefit from faster convergence during

training and mitigate issues such as vanishing gradients, thereby enhancing the overall

stability and performance of the PPO algorithm in optimizing trading strategies.

3.5.3 Output Layer (Actor):

The Actor network concludes with an output layer consisting of n_actions

neurons, where n_actions represents the number of possible actions the agent can take

(e.g., Buy, Sell). This output layer employs the Softmax activation function, which

transforms the raw outputs into a probability distribution over the available actions. By

generating a probability distribution, the Actor-network facilitates stochastic policy

updates, allowing the agent to explore various trading actions probabilistically. This

probabilistic approach promotes exploration, enabling the agent to discover potentially

profitable strategies that may not be immediately apparent. The Softmax activation

ensures that the probabilities are normalized and sum to one. It is crucial for the policy

gradient methods used in PPO to update the policy effectively based on the expected

rewards.

3.5.4 Output Layer (Critic):

In contrast to the Actor-network, the Critic network’s output layer is designed to

produce a single scalar value, representing the estimated value of the current state. This

output is achieved through a linear activation function, allowing the Critic to provide

an unbounded estimate of the expected cumulative reward from the current state

onward. The Critic network plays a pivotal role in the PPO framework by offering a

baseline for advantage estimation, essential for reducing the variance of policy gradient

updates. By accurately estimating the state value, the Critic helps the Actor-network

discern which actions are genuinely advantageous, guiding the policy updates toward

actions that maximize long-term profitability while maintaining stability in the learning

process.

3.5.5 Integration within PPO and A2C Frameworks

Both PPO and A2C utilize the Actor and Critic architectures but differ in their

optimization and training methodologies.

44

3.5.5.1 PPO Framework: employs a clipped surrogate objective to

ensure that policy updates do not deviate excessively from the current policy, enhancing

training stability. the Actor and Critic networks are updated simultaneously using

collected experiences, with the Critic providing value estimates that inform the Actor's

policy adjustments.

3.5.5.2 A2C Framework: A2C typically operates synchronously, where

multiple agents interact with the environment in parallel, and gradients from these

agents are aggregated to update the networks. it uses advantage estimates (the

difference between the observed rewards and the Critic's value estimates) to update the

Actor, encouraging actions that lead to higher-than-expected rewards.

This architecture corresponds to the Actor and Critic networks, which are

meticulously architected to function cohesively within the PPO framework and A2C

framework. With its two hidden layers and Softmax output, the Actor-

network generates a probability distribution over possible trading actions, promoting

exploration and strategic decision-making. Conversely, the Critic network, comprising

two hidden layers but with a linear output, provides accurate state value estimations

that serve as a baseline for advantage calculations. Together, these networks enable the

PPO algorithm to refine the trading policy iteratively, balancing the pursuit of high

returns with risk management and ensuring robust performance in dynamic market

conditions.

3.6 Deep Q-Network (DQN) Implementation

The DQN model implemented in this study serves as a foundational

reinforcement learning algorithm. This section provides a comprehensive overview of

the DQN architecture, elucidating its core components, including the Replay Buffer,

Neural Network architecture, and the DQN Agent, along with the rationale behind each

design choice.

3.6.1 Replay Buffer

The Replay Buffer is a critical component in DQN architecture. It facilitates the

storage and sampling of experiences to stabilize and improve the learning process.

It maintains a fixed-size memory to store tuples of experiences, each consisting

of the current state, action taken, reward received, next state, and a terminal flag

indicating the end of an episode. By employing a circular buffer mechanism, the buffer

efficiently manages memory usage, overwriting the oldest experiences when the buffer

is full. The Random Sampling method enables the agent to randomly sample a batch of

experiences, breaking the temporal correlations between consecutive samples and

promoting more stable and diverse training data.

45

3.6.2 Deep Q-Network Architecture

3.6.2.1 Input Layer receives the state representation, which includes

historical stock prices (Open, High, Low, Close), VWAP, and other relevant features.

Each state is represented by a vector with a dimensionality corresponding to the number

of input features.

3.6.2.2 Hidden Layers The network comprises two fully connected

(dense) hidden layers, each with 256 neurons. These layers employ the ReLU activation

function to introduce non-linearity, enabling the network to capture complex patterns

and relationships within the financial data. The depth and width of the hidden layers

are chosen to provide sufficient capacity for modeling intricate market dynamics

without incurring excessive computational costs or risking overfitting.

3.6.2.3 Action-Value Outputs consist of n_actions neurons, each

corresponding to the Q-value of a possible action (e.g., buy, sell, hold). A linear

activation function produces unbounded Q-value estimates, which are essential for

accurately assessing the expected cumulative rewards of actions.

3.7 Model Training

3.7.1 Proximal Policy Optimization

The PPO model is trained within a trading environment defined by several key

parameters and constraints. The initial account balance is 2,000 Baht, which the agent

uses to trade over the simulation period. The agent can invest 10% of its capital per

trade to limit risk and manage capital allocation. A trading cost rate of 0.001 is applied,

simulating real-world transaction fees that reduce profitability if not appropriately

handled. The agent can take a maximum of 2,000 trades throughout the simulation,

restricting one open position at a time and forcing the agent to carefully decide whether

to buy, sell, or hold in each step.

The batch size for training is 64, meaning that the model is updated based on mini

batches of 64 experiences sampled from the experience replay buffer, which stores the

last 2000 transitions. This buffer helps break the correlation between consecutive

experiences and stabilizes learning.

The agent is trained in over 100 episodes (n_games = 100), each representing a

complete trading period based on the historical dataset. A termination threshold

(KILL_THRESH) is set, where the environment ends if the agent’s balance falls below

40% of the initial account balance, adding a layer of risk management. The agent also

faces a lag of 20-time steps, simulating a delay in market responses, while the market

volatility is initialized to 1 and dynamically updated based on observed price

movements.

3.7.2 Advantage Actor-Critic

The A2C (Advantage Actor-Critic) model is trained within the same trading

environment as the PPO model, adhering to the predefined parameters and constraints

to simulate realistic trading conditions. The initial account balance is 2,000 Baht, and

the agent can invest up to 10% of its capital per trade. A trading cost rate of 0.001 is

applied to each transaction, mimicking real-world fees that can impact profitability if

not managed effectively. The agent is limited to a maximum of 2,000 trades throughout

the simulation and is restricted to one open position at a time, necessitating strategic

decision-making in buying, selling, or holding positions.

46

The agent is trained over 100 episodes (n_games = 100), with each episode

representing a complete trading period derived from the historical dataset. A

termination threshold (KILL_THRESH) is set, where the environment concludes if the

agent's balance falls below 40% of the initial account balance, reinforcing risk

management practices. The agent experiences a lag of 20-time steps to simulate delays

in market responses, and the market volatility is initialized to 1, dynamically updating

based on observed price movements.

In the A2C training process, learning updates occur every N = 10 steps within an

episode, meaning the agent updates its neural networks after every ten actions. The

batch size for training is set to 5, and the agent undergoes ten epochs of learning during

each update phase. The learning rate (alpha) is initialized at 0.0003, influencing the step

size during optimization.

The A2C agent utilizes both an actor-network, which is responsible for

determining the optimal actions, and a critic network, which evaluates the value of the

current state. The agent stores experiences, including states, actions, probabilities,

values, rewards, and done flags, in a memory buffer throughout each episode. This

memory enables the agent to calculate the GAE for more stable and efficient learning.

At the end of each episode, the agent performs an additional learning phase to update

the networks based on the accumulated experiences, refining its policy and value

estimations.

3.7.3 The Deep Q-Network

The model is trained in the same trading environment, maintaining consistency

in simulation parameters to ensure comparability across different algorithms. The initial

account balance is 2,000 Baht, with the agent allowed to invest up to 10% of its capital

per trade. A trading cost rate of 0.001 is implemented, and the agent is limited to a

maximum of 2,000 trades, holding only one open position at any given time to enforce

disciplined trading behavior.

The DQN agent is trained in over 250 episodes (n_games = 250), each

representing an entire trading period based on historical data. A termination threshold

(KILL_THRESH) is applied, ending the episode if the agent's balance drops below 40%

of the initial amount, thus embedding risk management into the training process. The

agent also encounters a lag of 20-time steps to simulate realistic market response delays,

with market volatility initialized at one and adjusted dynamically according to price

fluctuations.

In the DQN training framework, the agent employs an experienced replay buffer

with a capacity of 100,000 transitions. This buffer allows the agent to learn from a

diverse set of past experiences, breaking the correlation between sequential data and

enhancing learning stability. The batch size for training is set to 64, and the learning

rate is 0.0003, which dictates the speed at which the agent updates its Q-network.

The agent begins with an epsilon value of 1.0 for its epsilon-greedy policy,

promoting exploration of the action space. This epsilon value decays over time (eps_dec

= 1e-5) to a minimum threshold, gradually shifting the agent's focus from exploration

to exploitation of learned strategies. The target network is updated every 1,000 steps

(replace = 1,000) to provide a stable target for Q-value predictions, enhancing the

convergence of the learning process.

During training, the agent selects actions based on either exploration or

exploitation and stores each transition—including the current state, action taken, reward

47

received, next state, and done flag in the replay buffer. The learning process involves

sampling mini-batches from the replay buffer to update the Q network. The agent

minimizes the loss between the predicted and target Q-values, calculated using the

Bellman equation through backpropagation and gradient descent optimization

techniques.

3.8 Testing and Evaluation

The model was tested on a separate, unseen dataset to evaluate its performance in

a realistic trading environment. The testing phase is the final step in determining how

well the model generalizes to new market conditions and stock price movements that

were not part of the training data. The testing period consists of the final 30% of the

entire dataset, corresponding to the most recent market activity.

3.8.1 Testing Process

During testing, the agent made trading decisions based on the stock’s features,

including Open, High, Low, Close, Volume, and the engineered VWAP. These

decisions were guided by the learned policy from the training phase but with no further

updates to the model’s parameters (i.e., no learning occurs during testing). The agent

aimed to maximize the ROI based on time-series market conditions observed during

this period.

The model was initialized for each stock with a starting capital of 2,000 Baht, and

10% of the capital was allocated per trade. The agent could open only one position at a

time, either long or short, and was subject to a small trading cost of 0.1% per

transaction. Throughout the testing period, the agent interacted with the market data

and executed trades based on its learned strategy.
For executing trades, models made decisions at each time step using the test data.

The A2C agent mentions how action probabilities were computed, and actions were

selected. The DQN agent clarifies how actions were chosen based on Q-values.

3.8.2 Evaluation

In the evaluation phase, the trading models' performance was rigorously assessed

in a realistic trading environment using two primary metrics for each stock: Return on

Investment (ROI) and additional indicators such as the Sharpe Ratio, Maximum

Drawdown, Sortino Ratio, and Calmar Ratio. ROI measures the profitability of the

agent's trading decisions relative to the initial capital, accounting for all executed buy

and sell actions during the testing period. The supplementary metrics provide insights

into risk-adjusted returns, volatility, and potential losses, ensuring a comprehensive

evaluation of the models' robustness and reliability. To contextualize their

effectiveness, the models' performance was compared with existing literature,

positioning the findings within the broader field of algorithmic trading research and

highlighting relative strengths and areas for improvement.

With the methodology in place, including data preprocessing, environment

configuration, and model optimization, the DRL agents are now ready for testing in

simulated trading scenarios. Chapter 4 presents the results of these experiments,

providing insights into the comparative performance of each model and their practical

implications for portfolio management in volatile markets.

48

49

CHAPTER 4

RESULTS

Chapter 4 presents and analyzes the outcomes of the DRL models introduced in

the previous chapter, focusing on their effectiveness in managing portfolios within the

SET. This chapter compares the three algorithms (PPO, A2C, and DQN), using metrics

such as ROI, Sharpe Ratio, and maximum drawdown to assess performance across

different market conditions. By evaluating both profitability and risk management,

explore the strengths and weaknesses of each model, highlighting specific scenarios

where certain algorithms outperform others. The insights derived from this analysis

validate the methodology and offer practical implications for DRL-based portfolio

management in volatile financial environments.

4.1 Proximal Policy Optimization

4.1.1 Portfolio result

To evaluate the effectiveness of the PPO trading agent, the performance across a

diversified portfolio of ten different stocks. Table 4-1 summarizes the key performance

metrics for each stock during the testing period. This analysis provides insights into

how well the agent managed risk and generated returns in various market conditions

TABLE 4-1 The portfolio (test model) of PPO

Stock ROI (%) Sharpe Ratio (%)
Maximum

Drawdown (%)

Calmar

Ratio (%)

ADVANC 1.47 0.42 -1.82 0.44

INTUCH 1.80 0.44 -2.68 0.36

PTTEP 3.21 0.86 -1.63 1.06

BDMS 1.76 0.73 -1.29 0.74

MINT 1.91 0.40 -3.88 0.27

CPN -3.18 -0.73 -5.24 -0.33

AOT 1.45 0.53 -1.30 0.60

TISCO 1.01 0.39 -1.84 0.30

SCC 0.11 0.06 -1.11 0.05

IVL 5.92 1.27 -1.91 1.67

Cumulative

Return

15.46

Table 4-1 highlights the diverse performance of the PPO trading agent across ten

different stocks during the testing period. The agent achieved notable success with IVL

and PTTEP, recording the highest ROIs of 5.92% and 3.21%, respectively,

accompanied by strong Sharpe and Calmar Ratios, which indicate adequate risk-

adjusted returns and robust risk management. BDMS and MINT also delivered positive

ROIs of 1.76% and 1.91%, though MINT faced a higher maximum drawdown,

50

suggesting increased risk exposure. In contrast, CPN significantly underperformed with

a negative ROI of -3.18%, reflecting poor risk-adjusted performance and substantial

losses. AOT, INTUCH, ADVANC, TISCO, and SCC exhibited modest to low ROIs,

ranging from 0.11% to 1.80%, which may indicate conservative trading strategies or

missed profitable opportunities. While the cumulative return across all stocks was

15.46%, the varying results underscore the agent's strengths in certain stocks like IVL

and PTTEP, highlighting areas for improvement in managing risk and enhancing

performance for underperforming stocks such as CPN and SCC. Overall, the PPO agent

demonstrates potential with selective stocks, but consistency and strategy refinement

are necessary to optimize its performance across the entire portfolio.

4.1.2 Agent's Trading Behavior

To better understand the agent's decision-making process, we plotted the agent's

trading behavior during the testing period. The charts below show the agent's buy and

sell signals, along with the stock's price movements.

Figure 4-1 presents the price trends of ADVANC and INTUCH stocks during

both testing periods and the agent's buy and sell signals. The agent's trading behavior

for these telecommunications companies reflects its responsiveness to market

fluctuations. For ADVANC, the agent capitalized on short-term price movements,

contributing to a modest ROI of 1.47%. Similarly, for INTUCH, the agent's timely

trades resulted in a slightly higher ROI of 1.80%. The frequent adjustments in trading

positions indicate an adaptive strategy to optimize returns in a relatively stable market

sector.

FIGURE 4-1 The price trend of the ADVANC and INTUCH of PPO

Figure 4-2 showcases the price trends of PTTEP and BDMS stocks, including the

agent's buy and sell signals throughout the testing periods. PTTEP, an energy sector

stock, yielded a significant ROI of 3.21%, suggesting that the agent effectively

leveraged price volatility in the energy market. The trading signals for PTTEP show

well-timed entries and exits that maximized gains. For BDMS, a healthcare stock, the

51

agent achieved a positive ROI of 1.76%. The agent's trading decisions for BDMS reflect
a balance between capturing growth opportunities and managing risk in a defensive sector.

FIGURE 4-2 The price trend of the PTTEP and BDMS of PPO

Figure 4-3 illustrates the price trends of MINT and CPN stocks and the agent's

buy and sell signals during the testing periods. MINT, operating in the hospitality

industry, provided an ROI of 1.91% despite higher market volatility, as indicated by a

maximum drawdown of -3.88%. The agent's trading behavior for MINT shows attempts

to exploit short-term uptrends while mitigating losses. In contrast, CPN, a retail

property development stock, underperformed with a negative ROI of -3.18%. The

agent's trading signals for CPN reveal challenges in adjusting to adverse market

conditions, highlighting an area for strategy improvement.

FIGURE 4-3 The price trend of the MINT and CPN of PPO

Figure 4-4 displays the price trends of AOT and TISCO stocks, accompanied by

the agent's buy and sell signals during testing periods. The agent secured a modest ROI

52

of 1.45% for AOT, an airport services company, indicating cautious trading in a sector

sensitive to global travel trends. The trading signals suggest the agent made

conservative decisions to protect against downside risks. TISCO, a financial services

firm, yielded an ROI of 1.01%. The agent's trading behavior for TISCO reflects a

careful approach in a sector often influenced by economic indicators and regulatory

changes.

FIGURE 4-4 The price trend of the AOT and TISCO of PPO

Figure 4-5 presents the price trends of SCC and IVL stocks and the agent's buy

and sell signals during the testing periods. IVL, a chemical production company,

delivered the highest ROI of 5.92%, demonstrating the agent's proficiency in

capitalizing on favorable market conditions within the materials sector. The well-timed

trades for IVL indicate strong market trend identification and execution by the agent.

Conversely, SCC showed a negligible ROI of 0.11%, suggesting that the agent's

strategy was less effective for this stock. The trading signals for SCC point to a more

conservative approach, potentially missing out on profitable opportunities.

53

FIGURE 4-5 The price trend of the SCC and IVL of PPO

4.2 Advantage Actor-Critic

4.2.1 Portfolio result

To comprehensively evaluate the effectiveness of the Advantage Actor-Critic

trading agent, tested its performance across a diversified portfolio of ten different

stocks. Table 4-2 summarizes the key performance metrics for each stock during the

testing period. This detailed analysis provides insights into how well the agent managed

risk and generated returns under various market conditions.

TABLE 4-2 The portfolio (test model) of A2C

Stock ROI (%) Sharpe Ratio (%)
Maximum

Drawdown (%)

Calmar Ratio

(%)

ADVANC 0 0 0 0

INTUCH 1.80 0.44 -2.68 0.36

PTTEP 2.32 0.47 -3.38 0.37

BDMS -0.01 -1.04 -0.02 -0.22

MINT 1.85 0.39 -3.63 0.28

CPN 3.17 0.72 -1.60 1.07

AOT 0 0 0 0

TISCO 0 0 0 0

SCC 0 0 0 0

IVL -2.04 -0.38 -4.46 -0.25

Cumulative

Return

7.09

54

Table 4-2 highlights the performance of the A2C trading agent across ten different

stocks during the testing period. The agent demonstrated varying degrees of success,

with notable achievements and areas needing improvement. CPN achieved the highest

ROI of 3.17%, accompanied by a robust Sharpe Ratio of 0.72 and a Calmar Ratio of

1.07. These figures indicate that the agent generated substantial returns and managed

risk effectively, resulting in robust risk-adjusted performance. The lower Maximum

Drawdown of -1.60% suggests that the agent successfully limited losses during

unfavorable market movements. PTTEP and MINT also performed well. PTTEP

recorded an ROI of 2.32% with a Sharpe Ratio of 0.47, while MINT had an ROI of

1.85% and a Sharpe Ratio of 0.39. These Sharpe Ratios suggest moderate risk-adjusted

returns, indicating that the agent managed to balance risk and reward adequately for

these stocks. However, their Maximum Drawdowns of -3.38% and -3.63%,

respectively, imply that there were periods of significant decline, which the agent

navigated to still achieve positive returns. INTUCH delivered a positive ROI of 1.80%

with a Sharpe Ratio of 0.44.

While the ROI reflects a profitable outcome, the moderate Sharpe Ratio indicates

that there is room for improvement in risk management to enhance risk-adjusted

returns. Stocks like ADVANC AOT, TISCO, and SCC showed no change in ROI, each

recording 0%. Their Sharpe Ratios and Calmar Ratios were also 0%, suggesting

minimal trading activity or that the agent maintained a neutral position throughout the

testing period. This lack of activity could be due to the agent not identifying profitable

trading opportunities or choosing to hold positions without executing trades. On the

downside, BDMS and IVL underperformed. BDMS had a negligible negative ROI of -

0.01%, with a Sharpe Ratio of -1.04 and a Calmar Ratio of -0.22. These negative ratios

indicate poor risk-adjusted returns and suggest that the agent's strategy did not align

well with this stock's market behavior. IVL experienced a more significant negative

ROI of -2.04%, with a Sharpe Ratio of -0.38 and a Calmar Ratio of -0.25, highlighting

challenges in risk management and loss mitigation for this stock.

The cumulative return across all stocks was 7.09%, reflecting the overall

performance of the A2C agent. While this indicates a positive return on the portfolio

level, the disparities among individual stocks suggest that the agent excelled in certain

areas but struggled with consistency across the portfolio. The success with stocks like

CPN, PTTEP, and MINT showcases the agent's potential, whereas the lackluster

performance with other stocks points to areas where the agent's strategy could be

refined.

4.2.2 Agent's Trading Behavior

Figures 4-6 to 4-9 present the price trends of selected stocks during the testing

periods, along with the agent's buy and sell signals. These visual representations

provide deeper insights into the agent's decision-making process and its responsiveness

to market dynamics.

Figure 4-6 illustrates the price trends and trading signals for INTUCH and

PTTEP. The agent's buy and sell decisions corresponded with favorable market

movements, enabling it to capture gains during upward trends. The timing of these

trades suggests that the agent effectively identified trading opportunities in these stocks.

55

FIGURE 4-6 The price trend of the INTUCH and PTTEP of A2C

Figure 4-7 displays the price trends and agent signals for BDMS and CPN. While

the agent achieved significant success with CPN, reflected in its high ROI and risk-

adjusted metrics, its performance with BDMS was suboptimal. The negative ROI for

BDMS indicates that the agent's trading signals did not align well with the stock's price

movements, leading to poor outcomes.

FIGURE 4-7 The price trend of the BDMS and CPN of A2C

56

Figure 4-8 focuses on IVL, where the agent's trading decisions resulted in a

negative ROI. The buy and sell signals suggest that the agent may have misinterpreted

market indicators or failed to adapt to this stock's volatility, highlighting a need for

strategy refinement.

FIGURE 4-8 The price trend of the IVL of A2C

Figure 4-9 presents the price trends of the other stocks ADVANC, AOT, TISCO,

and SCC along with the agent's buy and sell signals. The ROI for these stocks remained

at 0%, indicating that the agent either did not execute any trades or consistently held

positions without realizing gains or losses. This inactivity might be due to the agent not

detecting sufficient trading opportunities or choosing to maintain a neutral stance in

uncertain market conditions.

57

FIGURE 4-9 The price trend of ADVANC, AOT, TISCO, and SCC of A2C

4.3 Deep Q-Network

4.3.1 Portfolio result

To comprehensively evaluate the effectiveness of the DQN trading agent. Table

4-3 highlights the performance of ten different stocks during the testing period.

TABLE 4-3 The portfolio (test model) of DQN

Stock ROI (%) Sharpe Ratio (%)
Maximum

Drawdown (%)

Calmar

Ratio (%)

ADVANC 4.14 1.22 -1.45 1.69

INTUCH -0.68 -0.17 -3.31 -0.12

PTTEP -0.31 -0.06 -5.45 -0.03

BDMS 0.08 0.03 -2.39 0.02

MINT 0.42 0.11 -4.44 0.06

CPN 2.32 0.59 -2.88 0.48

AOT 1.12 0.37 -2.01 0.33

TISCO 3.55 1.53 -0.72 2.91

SCC -1.28 -0.50 -2.71 -0.28

IVL 3.43 0.76 -2.17 0.94

Cumulative

Return

12.79

58

The agent demonstrated varying degrees of success, with notable achievements

and areas needing improvement. This detailed analysis provides insights into how well

the agent managed risk and generated returns under various market conditions.

ADVANC achieved the highest ROI of 4.14%, accompanied by a robust Sharpe

Ratio of 1.22 and a Calmar Ratio of 1.69. These figures indicate that the agent generated

substantial returns and managed risk effectively, resulting in robust risk-adjusted

performance. The low Maximum Drawdown of -1.45% suggests effective loss

limitation during unfavorable market movements. also delivered impressive results,

recording an ROI of 3.55%, the highest Sharpe Ratio of 1.53, and a Calmar Ratio of

2.91. The minimal Maximum Drawdown of -0.72% reflects exceptional risk

management and stability throughout the trading period. IVL showed significant gains

with an ROI of 3.43%, a Sharpe Ratio of 0.76, and a Calmar Ratio of 0.94. Despite a

Maximum Drawdown of -2.17%, the agent effectively navigated market fluctuations to

achieve positive returns. CPN achieved an ROI of 2.32%, with a Sharpe Ratio of 0.59

and a Calmar Ratio of 0.48. These metrics suggest moderate risk-adjusted returns,

indicating a balanced approach to risk and a reward for this stock.

 AOT and MINT also contributed positively to the portfolio. AOT recorded an

ROI of 1.12% with a Sharpe Ratio of 0.37, while MINT had an ROI of 0.42% and a

Sharpe Ratio of 0.11. Their Maximum Drawdowns of -2.01% and -4.44%, respectively,

imply periods of significant decline that the agent managed to overcome for overall

gains. On the downside, SCC underperformed with a negative ROI of -1.28%, a Sharpe

Ratio of -0.50, and a Calmar Ratio of -0.28. These negative ratios indicate poor risk-

adjusted returns and suggest that the agent's strategy did not align well with this stock's

market behavior. INTUCH and PTTEP also recorded negative ROIs of -0.68% and -

0.31%, respectively, with corresponding negative Sharpe and Calmar Ratios,

highlighting challenges in risk management and loss mitigation for these stocks.

BDMS (Bangkok Dusit Medical Services PCL) had a negligible positive ROI of

0.08%, with a Sharpe Ratio of 0.03 and a Calmar Ratio of 0.02, suggesting minimal

trading activity or limited profitability during the testing period. The cumulative return

across all stocks was 12.79%, reflecting the overall performance of the DQN agent.

While this indicates a positive return at the portfolio level, the disparities among

individual stocks suggest that the agent excelled in certain areas but struggled with

consistency across the portfolio. The success with stocks like ADVANC, TISCO, and

IVL showcases the agent's potential, whereas the underperformance with stocks like

SCC, INTUCH, and PTTEP points to areas where the agent's strategy could be refined.

59

FIGURE 4-10 The price trend of the ADVANC and INTOUCH of DQN

FIGURE 4-11 The price trend of the PTTEP and BDMS of DQN

Figure 4-11 displays the price trends of PTTEP and BDMS stocks during the

testing period, accompanied by the agent's buy and sell signals. The agent's trading

actions for these stocks demonstrate its strategy in navigating market movements. For

PTTEP, the agent's cautious approach resulted in minimal losses, showing its tendency

to avoid high-risk scenarios. With BDMS, limited trading signals suggest the agent

struggled to identify clear market trends, leading to negligible returns.

Figure 4-12 shows the price trends of MINT and CPN stocks during the testing

period, along with the agent's buy and sell signals. The agent's decisions for these stocks

highlight its approach to capitalizing on market trends. The agent effectively leveraged

60

upward trends in CPN, timing its trades to maximize profits. In contrast, trading with

MINT was more conservative, possibly due to higher market volatility, resulting in

modest gains.

FIGURE 4-12 The price trend of the MINT and CPN of DQN

Figure 4-13 illustrates the price trends of AOT and TISCO stocks during the

testing period, with the agent's buy and sell signals overlaid. The agent's trading

behavior for these companies reflects its responsiveness to market dynamics. The agent

demonstrated strong performance with TISCO, making timely trades that led to

substantial returns and low drawdowns. The agent maintained a steady trading pattern

for AOT, achieving consistent, albeit smaller, profits.

61

FIGURE 4-13 The price trend of the AOT and TISCO of DQN

FIGURE 4-14 The price trend of the SCC and IVL of DQN

Figure 4-14 presents the price trends of SCC and IVL stocks during the testing

period, along with the agent's buy and sell signals. The agent's trading actions for these

stocks showcase its strategy for adapting to market conditions. While the agent

struggled with SCC, failing to mitigate losses during declining markets, it adapted its

strategy with IVL to capture gains despite mid-period volatility.

62

It comprehensively evaluated three reinforcement learning trading agents, PPO,

A2C, and DQN, across a diversified portfolio of ten stocks. To gauge profitability and

risk management capabilities, each agent was assessed using key performance metrics,

including ROI, Sharpe Ratio, Maximum Drawdown, and Calmar Ratio. The PPO agent

achieved a cumulative return of 15.46%, demonstrating notable success with stocks like

IVL and PTTEP, but faced inconsistencies with underperforming stocks such as CPN.

The A2C agent attained a cumulative return of 7.09%, showing strengths in stocks like

CPN but recorded zero ROI in several others, indicating areas for strategy refinement.

The DQN agent yielded a cumulative return of 12.79%, excelling in stocks like

ADVANC and TISCO, but encountered challenges with stocks like SCC. Overall,

while each agent exhibited potential in generating returns and managing risk under

certain market conditions, the varying performances underscore the necessity for

improving consistency and optimizing trading strategies across the entire portfolio to

enhance overall effectiveness.

The results highlight the strengths and limitations of DRL-based trading

strategies, offering valuable insights into their adaptability and performance under

varying market conditions. Considering these findings, Chapter 5 reflects on this

research's overall contributions, addresses its limitations, and proposes further

directions for future work to advance DRL in financial markets.

CHAPTER 5

CONCLUSION, DISCUSSION, AND FUTURE WORK

This chapter summarizes the key findings of this study, discusses their

implications in the broader context of financial markets and reinforcement learning, and

identifies potential directions for future research and practical applications. Through

this chapter, we provide a reflective assessment of the deep reinforcement learning

DRL-based trading model developed for the Stock Exchange of Thailand (SET) and

explore avenues for further refinement and extension of this work.

5.1 Conclusion

The thesis presented in this thesis demonstrates the potential of deep

reinforcement learning (DRL) models to effectively handle the complexities of stock

trading on the Stock Exchange of Thailand (SET). By implementing three DRL

algorithms—Target Deep Q-Network (TDQN), Advantage Actor-Critic (A2C), and

Proximal Policy Optimization (PPO), this study has shown that AI-driven trading

agents can develop adaptive strategies that maximize returns while managing risk. Key

conclusions from the research include:

Performance Comparison: Among the three models, PPO demonstrated superior

adaptability in the volatile SET environment, achieving higher returns and a favorable

risk-to-reward ratio. A2C and TDQN also showed promise but needed more

consistency in handling rapid market fluctuations.

Data Preprocessing and Feature Engineering: Integrating data normalization

techniques and engineered features, such as the Volume-Weighted Average Price

(VWAP), played a critical role in enhancing model performance. These features

enabled the models to capture market trends better, thus improving decision accuracy.

Applicability to Emerging Markets: This study emphasizes the effectiveness of

DRL in emerging markets like SET, where traditional models often need to catch up.

The DRL model’s capacity for continuous learning and adaptation shows significant

promise in navigating the unique challenges of emerging financial markets.

Overall, the study validates the effectiveness of DRL-based trading strategies,

providing a solid foundation for integrating these models into real-world trading

systems that require adaptability, robustness, and a balance between profit and risk

management.

5.2 Discussion

This study's findings contribute to a growing body of research on AI-driven

trading strategies and underscore the advantages of DRL in complex, volatile markets.

This section discusses the study's findings' implications, limitations, and practical

deployment considerations in financial markets.

Advantages of DRL in Financial Trading: DRL offers a flexible framework that

allows trading agents to learn optimal strategies without the need for predefined rules.

This adaptability is particularly advantageous in financial markets, where conditions

constantly change, and traditional rule-based approaches often need help keeping up.

64

The results show that DRL models, particularly PPO, can learn complex trading

strategies to yield higher returns while managing risk.

Limitations and Constraints: Despite the promising results, the study also

encountered limitations that affected the generalizability of the findings. The DRL

models were trained on historical data, which may not fully represent future market

conditions. Furthermore, the model's performance may vary based on hyperparameter

settings and the specific selection of stocks. Additionally, the computational demands

of DRL training can be a limiting factor in practical applications, as real-time adaptation

requires substantial processing power.

Implications for Financial Practitioners: This study's successful implementation

of DRL suggests that AI-driven models can enhance traditional financial strategies.

However, deploying DRL models in real trading environments demands careful

consideration of operational factors, such as data latency, transaction costs, and

regulatory constraints. Financial practitioners must also consider the interpretability of

AI models as regulatory bodies increasingly prioritize transparency in automated

decision-making systems.

This discussion highlights the transformative potential and the practical

challenges associated with integrating DRL into stock trading, underscoring the need

for further research and refinement before full-scale deployment.

5.3 Future Work

While this research has made significant strides in applying DRL to stock trading

in emerging markets, several promising directions remain for future exploration and

improvement. Expanding upon this foundation could enhance the practical performance

and theoretical robustness of DRL-based trading models.

Real-Time Learning and Online Adaptation: Future work could incorporate

online learning techniques, enabling the model to adapt to incoming market data

quickly. This could improve the model's responsiveness to sudden market changes and

enhance its robustness in volatile trading environments.

Integration of Additional Data Sources: Including alternative data sources, such

as news sentiment, social media signals, and macroeconomic indicators, could provide

a richer context for trading decisions. By integrating these external factors, future

models could achieve a more holistic understanding of market conditions, potentially

improving prediction accuracy and adaptability.

Model Interpretability and Explainability: As DRL models are increasingly

considered for deployment in regulated financial environments, enhancing their

interpretability becomes crucial. Future studies could explore explainable AI (XAI)

techniques, such as Shapley values or feature importance analysis, to increase

transparency in the model’s decision-making process, making it easier for financial

analysts to understand and trust AI-driven strategies.

Hybrid Models and Ensemble Techniques: Combining DRL with other machine

learning methods, such as supervised learning or ensemble techniques, may create

hybrid models that leverage the strengths of multiple approaches. For example,

integrating supervised learning for market prediction with DRL for decision-making

could yield a more robust trading system.

65

Risk Management and Reward Shaping: Future research could focus on refining

the reward functions to incorporate more sophisticated risk management strategies. By

shaping the reward structure to account for factors like volatility, maximum drawdown,

and transaction costs, models can learn trading strategies that are not only profitable

but also more risk sensitive.

Application to Different Markets and Asset Classes: Expanding the application

of DRL models to other markets, such as commodities, bonds, or forex, could provide

insights into their adaptability across different asset classes. Additionally, applying

these models to high-frequency trading or multi-asset portfolios could test the

scalability and flexibility of DRL in diverse trading environments.

This future work aims to build upon the foundations of the current study,

addressing its limitations and exploring innovative approaches to enhance DRL-based

trading models' adaptability, interpretability, and applicability in real-world financial

markets.

66

REFERENCES

Avramelou, L.,et al. “Cryptosentiment: A Dataset and Baseline for

Sentiment-Aware Deep Reinforcement Learning for Financial Trading.” In

Proceedings of 2023 IEEE International Conference on Acoustics, Speech, and Signal

Processing Workshops (ICASSPW). 1-5 (4-10 June 2023).

Ballings, M.,et al. "Evaluating multiple classifiers for stock price direction

prediction." Expert Systems with Applications, vol.42 no.20, (2015): 7046-7056.

https://doi.org/https://doi.org/10.1016/j.eswa.2015.05.013

Bollen, J., Mao, H., & Zeng, X. "Twitter mood predicts the stock market."

Journal of Computational Science, vol.2 no.1, (2011): 1-8.

https://doi.org/https://doi.org/10.1016/j.jocs.2010.12.007

Brigham, E. F., & Ehrhardt, M. C. (2013). Financial Management: Theory &

Practice. Cengage Learning.

Cheng, L. C.,et al. (2021). A novel trading strategy framework based on

reinforcement deep learning for financial market predictions. Mathematics, 9(23),

3094. https://doi.org/10.3390/math9233094

Dang, Q.-V. “Reinforcement Learning in Stock Trading.” In Proceedings of

Advanced Computational Methods for Knowledge Engineering. 311-322 (2020).

Dantas, S. G., & Silva, D. G. “Equity Trading at the Brazilian Stock Market

Using a Q-Learning Based System.” In Proceedings of 2018 7th Brazilian

Conference on Intelligent Systems (BRACIS). 133-138 (22-25 Oct. 2018).

Fischer, T., & Krauss, C. "Deep learning with long short-term memory

networks for financial market predictions." European Journal of Operational

Research, vol.270 no.2, (2018): 654-669.

https://doi.org/https://doi.org/10.1016/j.ejor.2017.11.054

https://doi.org/https:/doi.org/10.1016/j.eswa.2015.05.013
https://doi.org/https:/doi.org/10.1016/j.jocs.2010.12.007
https://doi.org/10.3390/math9233094
https://doi.org/https:/doi.org/10.1016/j.ejor.2017.11.054

68

Hendershott, T., Jones, C. M., & Menkveld, A. J. "Does Algorithmic Trading

Improve Liquidity?" The Journal of Finance, vol.66 no.1, (2011): 1-33.

https://doi.org/https://doi.org/10.1111/j.1540-6261.2010.01624.x

Hochreiter, S., & Schmidhuber, J. "Long Short-Term Memory." Neural

Comput., vol.9 no.8, (1997): 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

Hu, Y. J., & Lin, S. J. “Deep Reinforcement Learning for Optimizing

Finance Portfolio Management.” In Proceedings of 2019 Amity International

Conference on Artificial Intelligence (AICAI). 14-20 (4-6 Feb. 2019).

Hu, Z.,et al. (2018). Listening to Chaotic Whispers: A Deep Learning

Framework for News-oriented Stock Trend Prediction. Proceedings of the Eleventh

ACM International Conference on Web Search and Data Mining, 261–269.

https://doi.org/10.1145/3159652.3159690

Johnman, M., Vanstone, B. J., & Gepp, A. "Predicting FTSE 100 returns and

volatility using sentiment analysis." Accounting & Finance, vol.58 no.S1, (2018):

253-274. https://doi.org/https://doi.org/10.1111/acfi.12373

Jordan, M. I., & Mitchell, T. M. "Machine learning: Trends, perspectives,

and prospects." Science, vol.349 no.6245, (2015): 255-260.

https://doi.org/10.1126/science.aaa8415

Kara, Y., Acar Boyacioglu, M., & Baykan, Ö. K. "Predicting direction of

stock price index movement using artificial neural networks and support vector

machines: The sample of the Istanbul Stock Exchange." Expert Systems with

Applications, vol.38 no.5, (2011): 5311-5319.

https://doi.org/https://doi.org/10.1016/j.eswa.2010.10.027

Kim, Y., & Enke, D. (2016). Using neural networks to forecast volatility for

an asset allocation strategy based on the target volatility. Procedia Computer Science,

95, 281–286.

Kumar, B. R. A.,et al. “Evaluating the Performance of Diverse Machine

Learning Approaches in Stock Market Forecasting.” In Proceedings of Multi-

https://doi.org/https:/doi.org/10.1111/j.1540-6261.2010.01624.x
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/3159652.3159690
https://doi.org/https:/doi.org/10.1111/acfi.12373
https://doi.org/10.1126/science.aaa8415
https://doi.org/https:/doi.org/10.1016/j.eswa.2010.10.027

69

disciplinary Trends in Artificial Intelligence: 16th International Conference, MIWAI

2023, Hyderabad, India, July 21–22, 2023, Proceedings. 255–264.

Lakshmanarao, A.,et al. “Loan Default Prediction Using Machine Learning

Techniques and Deep Learning ANN Model.” In Proceedings of 2023 Annual

International Conference on Emerging Research Areas: International Conference on

Intelligent Systems (AICERA/ICIS). 1-5 (16-18 Nov. 2023).

LeCun, Y., Bengio, Y., & Hinton, G. "Deep learning." Nature, vol.521

no.7553, (2015): 436-444. https://doi.org/10.1038/nature14539

Lei, K.,et al. "Time-driven feature-aware jointly deep reinforcement learning

for financial signal representation and algorithmic trading." Expert Systems with

Applications, vol.140, (2020): 112872.

https://doi.org/https://doi.org/10.1016/j.eswa.2019.112872

Li, Y., Zheng, W., & Zheng, Z. "Deep Robust Reinforcement Learning for

Practical Algorithmic Trading." IEEE Access, vol.7, (2019): 108014-108022.

https://doi.org/10.1109/ACCESS.2019.2932789

Li, Y., Ni, P., & Chang, V. (2020). Application of deep reinforcement

learning in stock trading strategies and stock forecasting. Computing, 102(6), 1305–

1322. https://doi.org/10.1007/s00607-019-00773-w

Liu et al. (2022). Practical deep reinforcement learning approach for stock

trading. arXiv. https://doi.org/10.48550/arXiv.1811.07522

Liu et al. “FinRL: deep reinforcement learning framework to automate

trading in quantitative finance.” In Proceedings of The Second ACM International

Conference on AI in Finance. Article 1.

Magdon-Ismail, M., & Atiya, A. F. (2004). Maximum drawdown. Risk

Magazine, 17(10), 99–102.

Mnih, V.,et al. “Asynchronous Methods for Deep Reinforcement Learning.”

In Proceedings of The 33rd International Conference on Machine Learning. 1928--

1937.

https://doi.org/10.1038/nature14539
https://doi.org/https:/doi.org/10.1016/j.eswa.2019.112872
https://doi.org/10.1109/ACCESS.2019.2932789
https://doi.org/10.1007/s00607-019-00773-w
https://doi.org/10.48550/arXiv.1811.07522

70

Mnih, V.,et al. "Human-level control through deep reinforcement learning."

Nature, vol.518 no.7540, (2015): 529-533. https://doi.org/10.1038/nature14236

Moody, J., & Saffell, M. "Learning to trade via direct reinforcement." IEEE

Transactions on Neural Networks, vol.12 no.4, (2001): 875-889.

https://doi.org/10.1109/72.935097

Nan, A., Perumal, A., & Zaiane, O. R. “Sentiment and Knowledge Based

Algorithmic Trading with Deep Reinforcement Learning.” In Proceedings of

Database and Expert Systems Applications. 167-180 (2022//).

Nassirtoussi, A. K., et al. "Text mining for market prediction: A systematic

review." Expert Systems with Applications, vol.41 no.16, (2014): 7653-7670.

https://doi.org/https://doi.org/10.1016/j.eswa.2014.06.009

Nelson, D. M. Q., Pereira, A. C. M., & Oliveira, R. A. d. “Stock market's

price movement prediction with LSTM neural networks.” In Proceedings of 2017

International Joint Conference on Neural Networks (IJCNN). 1419-1426 (14-19 May

2017).

Puterman, M. L. (2014). Markov Decision Processes: Discrete Stochastic

Dynamic Programming. John Wiley & Sons.

Serrano, W. "Deep Reinforcement Learning with the Random Neural

Network." Engineering Applications of Artificial Intelligence, vol.110, (2022):

104751. https://doi.org/https://doi.org/10.1016/j.engappai.2022.104751

Sharpe, W. F. (1966). Mutual fund performance. The Journal of Business,

39(1), 119–138.

Silver, D.,et al. "Mastering the game of Go with deep neural networks and

tree search." Nature, vol.529 no.7587, (2016): 484-489.

https://doi.org/10.1038/nature16961

Stock Exchange of Thailand. 12 November, 2024, Available from:

https://www.set.or.th/th/about/overview/journey

https://doi.org/10.1038/nature14236
https://doi.org/10.1109/72.935097
https://doi.org/https:/doi.org/10.1016/j.eswa.2014.06.009
https://doi.org/https:/doi.org/10.1016/j.engappai.2022.104751
https://doi.org/10.1038/nature16961
https://www.set.or.th/th/

71

Sülo, I.,et al. “Energy Efficient Smart Buildings: LSTM Neural Networks for

Time Series Prediction.” In Proceedings of 2019 International Conference on Deep

Learning and Machine Learning in Emerging Applications (Deep-ML). 18-22 (26-28

Aug. 2019).

Taghian, M., Asadi, A., & Safabakhsh, R. "Learning financial asset-specific

trading rules via deep reinforcement learning." Expert Systems with Applications,

vol.195, (2022): 116523. https://doi.org/https://doi.org/10.1016/j.eswa.2022.116523

Théate, T., & Ernst, D. "An application of deep reinforcement learning to

algorithmic trading." Expert Systems with Applications, vol.173, (2021): 114632.

https://doi.org/https://doi.org/10.1016/j.eswa.2021.114632

Vázquez-Canteli, J. R., & Nagy, Z. "Reinforcement learning for demand

response: A review of algorithms and modeling techniques." Applied Energy, vol.235,

(2019): 1072-1089. https://doi.org/https://doi.org/10.1016/j.apenergy.2018.11.002

Watkins, C. J. C. H., & Dayan, P. "Q-learning." Machine Learning, vol.8

no.3, (1992): 279-292. https://doi.org/10.1007/BF00992698

Weng, B.,et al. "Predicting short-term stock prices using ensemble methods

and online data sources." Expert Systems with Applications, vol.112, (2018): 258-273.

https://doi.org/https://doi.org/10.1016/j.eswa.2018.06.016

Yadav, A., Jha, C. K., & Sharan, A. (2020). Optimizing LSTM for time

series prediction in Indian stock market. Procedia Computer Science, 167, 2091–

2100. https://doi.org/10.1016/j.procs.2020.03.257

Yang, H.et al. “Deep reinforcement learning for automated stock trading: an

ensemble strategy.” In Proceedings of The First ACM International Conference on

AI in Finance. Article 31.

https://doi.org/https:/doi.org/10.1016/j.eswa.2022.116523
https://doi.org/https:/doi.org/10.1016/j.eswa.2021.114632
https://doi.org/https:/doi.org/10.1016/j.apenergy.2018.11.002
https://doi.org/10.1007/BF00992698
https://doi.org/https:/doi.org/10.1016/j.eswa.2018.06.016
https://doi.org/10.1016/j.procs.2020.03.257

72

APPENDIX A

The code of Proximal Policy Optimization (PPO) model

74

"""

Below is the complete code for the PPO agent, organized into logical sections for

clarity in Google Colab.

requir:

python 3.10.12

ta 0.11.0

create folder: tmp1

"""

#!pip install ta

Import necessary libraries for data handling and processing

import pandas as pd

from pandas_datareader import DataReader

import ta

from ta.volume import VolumeWeightedAveragePrice

import yfinance as yf

from sklearn.preprocessing import StandardScaler

Env

import gym

from gym import spaces

import numpy as np

import random

import torch

Pytorch

import os

import numpy as np

import torch as T

import torch.nn as nn

import torch.optim as optim

from torch.distributions import Categorical

Outputs

import matplotlib.pyplot as plt

1. Data Preprocessing

def process_stock(symbol):

 print(f"Processing stock: {symbol}")

 # Download data

 df = yf.download(symbol, start='2017-01-01', end='2023-06-01')

 df.drop('Adj Close', axis=1, inplace=True)

 print(df)

 # Flatten MultiIndex columns if they exist

 if isinstance(df.columns, pd.MultiIndex):

 df.columns = df.columns.get_level_values(0)

75

 print(df.head()) # For debugging

 # Calculate VWAP and preprocess data

 print('Calculate VWAP')

 # Calculate VWAP and preprocess data

 vwap = VolumeWeightedAveragePrice(

 high=df['High'],

 low=df['Low'],

 close=df['Close'],

 volume=df['Volume'],

 window=14,

 fillna=False

)

 df['VWAP'] = vwap.volume_weighted_average_price()

 df.dropna(inplace=True)

 # Select features

 features = ['Open', 'High', 'Low', 'Close', 'Volume', 'VWAP']

 scaler = StandardScaler()

 scaled_features = scaler.fit_transform(df[features])

 # Prepare the dataframe

 df_mod = pd.DataFrame(scaled_features, columns=features)

 close_price_values = df["Close"].values

 # Assign 'Close_Price' to df_mod

 df_mod["Close_Price"] = close_price_values # Potential source of error

 # Reset index

 df_mod = df_mod.reset_index(drop=True)

 print(f"df_mod shape after reset_index: {df_mod.shape}")

 # Split data into training and testing sets

 df_train = df_mod.iloc[:int(len(df_mod) * 0.7)]

 df_test = df_mod.iloc[int(len(df_mod) * 0.7):]

 # Plot close data

 plt.rcParams['figure.figsize'] = [15, 5]

 df_train['Close_Price'].plot(label='Train')

 df_test['Close_Price'].plot(label='Test')

 plt.legend()

 plt.show()

 return df_train, df_test, df, df_mod, scaler # Return scaler for later use

76

2. Environment Definition

INITIAL_ACCOUNT_BALANCE = 2000

Structure env

class StockTradingEnv(gym.Env):

 """A stock trading environment for OpenAI gym"""

 metadata = {'render.modes': ['human']}

 def __init__(self, df):

 super(StockTradingEnv, self).__init__()

 # Generic variables

 self.df = df

 # Account variables

 self.available_balance = INITIAL_ACCOUNT_BALANCE

 self.net_profit = 0

 # Position variables

 self.num_trades_long = 0

 self.num_trades_short = 0

 self.long_short_ratio = 0

 # Current Step

 self.current_step = 0

 self.lag = 20

 self.volatility = 1

 self.max_steps = len(df)

 # Actions: Long (0), Short (1), Hold (2)

 self.action_space = spaces.Discrete(3)

 # Observation space

 self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape=(7,),

dtype=np.float32)

 # Parameters for dynamic allocation

 self.max_percent = 0.2 # Maximum 20% allocation

 self.min_percent = 0.05 # Minimum 5% allocation

 def _calculate_dynamic_allocation(self):

 """

 Calculates dynamic position sizing based on recent volatility.

 """

 recent_volatility = self.df.loc[self.current_step - self.lag:self.current_step,

"Close_Price"].std()

77

 allocation = self.min_percent + (self.max_percent - self.min_percent) * (1 / (1 +

recent_volatility))

 allocation = np.clip(allocation, self.min_percent, self.max_percent)

 return allocation

 # Reward function now returns immediate profit or loss

 def _calculate_reward(self, profit_loss):

 """

 Calculates the immediate reward based on profit or loss.

 """

 return profit_loss

 # Structure observation data

 def _next_observation(self):

 """

 Retrieves the next observation from the environment.

 """

 item_0_T0 = self.df.loc[self.current_step, "Open"].item()

 item_1_T0 = self.df.loc[self.current_step, "High"].item()

 item_2_T0 = self.df.loc[self.current_step, "Low"].item()

 item_3_T0 = self.df.loc[self.current_step, "Close"].item()

 item_4_T0 = self.df.loc[self.current_step, "Volume"].item()

 item_5_T0 = self.df.loc[self.current_step, "VWAP"].item()

 env_4 = 1 if self.long_short_ratio else 0

 obs = np.array([item_0_T0, item_1_T0, item_2_T0, item_3_T0, item_4_T0,

item_5_T0, env_4], dtype=np.float32)

 return obs

 # Update the action handling and reward calculation

 def _take_action(self, action):

 """

 Executes the given action and updates the environment state.

 """

 current_price = self.df.loc[self.current_step, "Close_Price"].item()

 next_price = self.df.loc[self.current_step + 1, "Close_Price"].item()

 next_return = next_price / current_price - 1

 allocation = self._calculate_dynamic_allocation()

 if action == 0: # Long

 profit_loss = self.available_balance * allocation * next_return

 self.available_balance += profit_loss

 self.net_profit += profit_loss

 self.num_trades_long += 1

 elif action == 1: # Short

78

 profit_loss = self.available_balance * allocation * -next_return

 self.available_balance += profit_loss

 self.net_profit += profit_loss

 self.num_trades_short += 1

 elif action == 2: # Hold

 # No position taken; no profit or loss

 profit_loss = 0

 # Calculate reward based on immediate profit or loss

 self.reward = self._calculate_reward(profit_loss)

 # Update metrics

 self.long_short_ratio = self.num_trades_long / (self.num_trades_short +

self.num_trades_long + 1e-5)

 self.volatility = self.df.loc[self.current_step - self.lag:self.current_step,

"Close_Price"].std()

 # Execute one time step within the env

 def step(self, action):

 """

 Executes one time step within the environment.

 """

 self._take_action(action)

 reward = self.reward # Use the immediate reward calculated in _take_action

 self.current_step += 1

 is_max_step_taken = self.current_step >= self.max_steps - self.lag - 1

 done = is_max_step_taken

 obs = self._next_observation()

 return obs, reward, done, {}

 # Reset the state of the env to an initial state

 def reset(self):

 """

 Resets the environment to an initial state.

 """

 self.available_balance = INITIAL_ACCOUNT_BALANCE

 self.net_profit = 0

 self.current_step = self.lag

 self.num_trades_long = 0

 self.num_trades_short = 0

 self.long_short_ratio = 0 # Corrected variable name

79

 return self._next_observation()

 # Render the env to the console

 def render(self, mode='human', close=False):

 """

 Renders the environment.

 """

 pass

3. Neural Network Architectures

Actor Neural Net

class ActorNetwork(nn.Module):

 """

 Neural network for the actor in PPO.

 """

 def __init__(self, n_actions, input_dims, alpha,symbol, fc1_dims=256,

fc2_dims=256, fc3_dims=256, chkpt_dir='/content/tmp1/'):

 super(ActorNetwork, self).__init__()

 self.checkpoint_file = os.path.join(chkpt_dir, f'actor_torch_ppo_{symbol}')

 self.actor = nn.Sequential(

 nn.Linear(*input_dims, fc1_dims),

 nn.ReLU(),

 nn.Linear(fc1_dims, fc2_dims),

 nn.ReLU(),

 nn.Linear(fc2_dims, fc3_dims), # New layer

 nn.ReLU(),

 nn.Linear(fc3_dims, n_actions),

 nn.Softmax(dim=-1)

)

 self.optimizer = optim.AdamW(self.parameters(), lr=alpha)

 self.device = T.device('cuda:0' if T.cuda.is_available() else 'cpu') # GPU if have

 self.to(self.device)

 def forward(self, state):

 dist = self.actor(state)

 dist = Categorical(dist)

 return dist

 def save_checkpoint(self):

 T.save(self.state_dict(), self.checkpoint_file)

 def load_checkpoint(self):

 self.load_state_dict(T.load(self.checkpoint_file))

80

Critic Neural Net

class CriticNetwork(nn.Module):

 """

 Neural network for the critic in PPO.

 """

 def __init__(self, input_dims, alpha,symbol, fc1_dims=256, fc2_dims=256,

chkpt_dir='/content/tmp1/'):

 super(CriticNetwork, self).__init__()

 self.checkpoint_file = os.path.join(chkpt_dir, f'critic_torch_ppo_{symbol}')

 self.critic = nn.Sequential(

 nn.Linear(*input_dims, fc1_dims),

 nn.ReLU(),

 nn.Linear(fc1_dims, fc2_dims),

 nn.ReLU(),

 nn.Linear(fc2_dims, 1)

)

 self.optimizer = optim.AdamW(self.parameters(), lr=alpha)

 self.device = T.device('cuda:0' if T.cuda.is_available() else 'cpu') # GPU if have

 self.to(self.device)

 def forward(self, state):

 value = self.critic(state)

 return value

 def save_checkpoint(self):

 T.save(self.state_dict(), self.checkpoint_file)

 def load_checkpoint(self):

 self.load_state_dict(T.load(self.checkpoint_file))

4. Agent Definition

class PPOmemory:

 """

 Memory buffer for storing experiences during training.

 """

 def __init__(self, batch_size):

 self.states = []

 self.probs = []

 self.vals = []

 self.actions = []

 self.rewards = []

 self.dones = []

 self.batch_size = batch_size

81

 def generate_batches(self):

 n_states = len(self.states)

 batch_start = np.arange(0, n_states, self.batch_size)

 indices = np.arange(n_states, dtype=np.int64)

 np.random.shuffle(indices)

 batches = [indices[i:i+self.batch_size] for i in batch_start]

 return np.array(self.states),\

 np.array(self.actions),\

 np.array(self.probs),\

 np.array(self.vals),\

 np.array(self.rewards),\

 np.array(self.dones),\

 batches

 def store_memory(self, state, action, probs, vals, reward, done):

 self.states.append(state)

 self.actions.append(action)

 self.probs.append(probs)

 self.vals.append(vals)

 self.rewards.append(reward)

 self.dones.append(done)

 def clear_memory(self):

 self.states = []

 self.probs = []

 self.actions = []

 self.rewards = []

 self.dones = []

 self.vals = []

class Agent:

 """

 PPO Agent that interacts with the environment and learns from experiences.

 """

 def __init__(self, n_actions, input_dims,symbol, gamma=0.99, alpha=0.0003,

gae_lambda=0.95, policy_clip=0.2, batch_size=64, n_epochs=10):

 self.gamma = gamma

 self.policy_clip = policy_clip

 self.n_epochs = n_epochs

 self.gae_lambda = gae_lambda

 self.actor = ActorNetwork(n_actions, input_dims, alpha,symbol)

 self.critic = CriticNetwork(input_dims, alpha,symbol)

 self.memory = PPOmemory(batch_size)

 def remember(self, state, action, probs, vals, reward, done):

82

 """

 Stores experiences in memory.

 """

 self.memory.store_memory(state, action, probs, vals, reward, done)

 def save_models(self):

 """

 Saves the actor and critic models.

 """

 print('... saving models ...')

 self.actor.save_checkpoint()

 self.critic.save_checkpoint()

 def load_models(self):

 print('... loading models ...')

 self.actor.load_checkpoint()

 self.critic.load_checkpoint()

 # Old: Something incorrect

 def choose_action(self, observation):

 """

 Chooses an action based on the current policy.

 """

 state = T.tensor([observation], dtype=T.float).to(self.actor.device)

 state = state.flatten(0) # new

 dist = self.actor(state)

 value = self.critic(state)

 action = dist.sample()

 probs = T.squeeze(dist.log_prob(action)).item()

 action = T.squeeze(action).item()

 value = T.squeeze(value).item()

 return action, probs, value

 def learn(self):

 """

 Updates the actor and critic networks based on collected experiences.

 """

 for _ in range(self.n_epochs):

 state_arr, action_arr, old_prob_arr, vals_arr, reward_arr,\

 dones_arr, batches = self.memory.generate_batches()

 values = vals_arr

 advantage = np.zeros(len(reward_arr), dtype=np.float32)

83

 for t in range(len(reward_arr)-1):

 discount = 1

 a_t = 0

 for k in range(t, len(reward_arr)-1):

 a_t += discount*(reward_arr[k] + self.gamma*values[k+1]*(1-

int(dones_arr[k])) - values[k])

 discount *= self.gamma*self.gae_lambda

 advantage[t] = a_t

 advantage = T.tensor(advantage).to(self.actor.device)

 values = T.tensor(values).to(self.actor.device)

 for batch in batches:

 states = T.tensor(state_arr[batch], dtype=T.float).to(self.actor.device)

 old_probs = T.tensor(old_prob_arr[batch]).to(self.actor.device)

 actions = T.tensor(action_arr[batch]).to(self.actor.device)

 dist = self.actor(states)

 critic_value = self.critic(states)

 critic_value = T.squeeze(critic_value)

 new_probs = dist.log_prob(actions)

 prob_ratio = new_probs.exp() / old_probs.exp()

 weighted_probs = advantage[batch] * prob_ratio

 weighted_clipped_probs = T.clamp(prob_ratio, 1-self.policy_clip,

1+self.policy_clip)*advantage[batch]

 actor_loss = -T.min(weighted_probs, weighted_clipped_probs).mean()

 returns = advantage[batch] + values[batch]

 critic_loss = (returns - critic_value)**2

 critic_loss = critic_loss.mean()

 total_loss = actor_loss + 0.5*critic_loss

 self.actor.optimizer.zero_grad()

 self.critic.optimizer.zero_grad()

 total_loss.backward() # new

 self.actor.optimizer.step()

 self.critic.optimizer.step()

 self.memory.clear_memory()

5. Training and Evaluation Functions

def plot_learning_curve(x, scores, figure_file):

 """

 Plots the learning curve of the agent.

84

 """

 running_avg = np.zeros(len(scores))

 for i in range(len(running_avg)):

 running_avg[i] = np.mean(scores[max(0, i-100):(i+1)]) # this can change to 50

scores

 plt.plot(x, running_avg)

 plt.title('Running average of previous 100 scores')

 plt.savefig(figure_file)

def plot_signals_and_equity(df_res, original_df, symbol):

 plt.figure(figsize=(15,5))

 plt.plot(original_df["Close"], label='Close Price', color='blue')

 # Plot Actions (Buy/Sell Signals)

 plt.rcParams["figure.figsize"] = (15, 5)

 df_res[["Longs"]].plot(color="green")

 df_res[["Shorts"]].plot(color="red")

 plt.show()

def calculate_roi(df_res, initial_capital):

 final_equity = df_res["Equity"].iloc[-1]

 roi = (final_equity / initial_capital - 1) * 100

 return roi

def calculate_sharpe_ratio(df_res, risk_free_rate=0.0001):

 daily_returns = df_res["Equity"].pct_change().dropna()

 excess_returns = daily_returns - risk_free_rate / 252

 sharpe_ratio = np.mean(excess_returns) / np.std(excess_returns) * np.sqrt(252)

 return sharpe_ratio

def calculate_max_drawdown(df_res):

 equity = df_res["Equity"]

 running_max = equity.cummax()

 drawdown = (equity - running_max) / running_max

 max_drawdown = drawdown.min() * 100 # Expressed as a percentage

 return max_drawdown

def calculate_sortino_ratio(df_res, risk_free_rate=0.0001):

 daily_returns = df_res["Equity"].pct_change().dropna()

 excess_returns = daily_returns - risk_free_rate / 252

 downside_returns = excess_returns[excess_returns < 0]

 downside_deviation = np.sqrt(np.mean(downside_returns**2)) * np.sqrt(252)

 if downside_deviation == 0:

 return np.nan # Avoid division by zero

 sortino_ratio = np.mean(excess_returns) / downside_deviation

 return sortino_ratio

85

def plot_equity_drawdown(df_res, symbol):

 """

 Plots the equity curve and drawdown over time.

 """

 plt.figure(figsize=(13, 8))

 # Equity Curve

 plt.subplot(2, 1, 1)

 plt.plot(df_res["Equity"], label='Equity Curve', color='blue')

 plt.title(f'Equity Curve for {symbol}')

 plt.xlabel('Time')

 plt.ylabel('Equity')

 plt.legend()

 # Drawdown

 plt.subplot(2, 1, 2)

 equity = df_res["Equity"]

 running_max = equity.cummax()

 drawdown = (equity - running_max) / running_max

 plt.plot(drawdown, label='Drawdown', color='red')

 plt.title('Drawdown')

 plt.xlabel('Time')

 plt.ylabel('Drawdown (%)')

 plt.legend()

 plt.tight_layout()

 plt.show()

def calculate_metrics(df_res, initial_capital, perc_invest, symbol):

 # Calculate equity

 equities = [initial_capital]

 for i in range(1, len(df_res)):

 direction = df_res["Longs"].iloc[i-1] if df_res["Longs"].iloc[i-1] >= 0.5 else -

df_res["Shorts"].iloc[i-1]

 equity = equities[i-1] + equities[i-1] * direction * df_res["Returns"].iloc[i] *

perc_invest

 equities.append(equity)

 df_res["Equity"] = equities

 # Calculate Metrics

 roi = calculate_roi(df_res, initial_capital)

 sharpe_ratio = calculate_sharpe_ratio(df_res)

 max_drawdown = calculate_max_drawdown(df_res)

 sortino_ratio = calculate_sortino_ratio(df_res)

 # Estimate the number of years from the data

 total_days = len(df_res)

86

 years = total_days / 252 # Assuming 252 trading days in a year

 calmar_ratio = calculate_calmar_ratio(df_res, initial_capital, years)

 Benchmark_Perc = (df_res["Close_Price"].iloc[-1] / df_res["Close_Price"].iloc[0] -

1) * 100

 # Print Metrics

 print(f"=== Metrics for {symbol} ===")

 print(f"Benchmark Return for {symbol}: {round(Benchmark_Perc, 2)}%")

 print(f"ROI for {symbol}: {roi:.2f}%")

 print(f"Sharpe Ratio: {sharpe_ratio:.2f}")

 print(f"Maximum Drawdown: {max_drawdown:.2f}%")

 print(f"Sortino Ratio: {sortino_ratio:.2f}")

 print(f"Calmar Ratio: {calmar_ratio:.2f}")

 print("=============================\n")

 # Plot Equity and Drawdown

 plot_equity_drawdown(df_res, symbol)

def train_and_test_agent(symbol, df_train, df_test, df_mod, original_df, scaler):

 # Create the StockTradingEnv using the training data

 env = StockTradingEnv(df_train)

 # Initialize the agent

 N = 20

 batch_size = 5

 # n_epochs = 3

 n_epochs = 10

 alpha = 0.0003

 agent = Agent(n_actions=env.action_space.n,

input_dims=env.observation_space.shape, alpha=alpha, n_epochs=n_epochs,

batch_size=batch_size, symbol=symbol)

 # File to save the model training plot

 figure_file = f'{symbol}_stock_training.png'

 # Initialize tracking variables for training performance

 best_score = env.reward_range[0]

 score_history = []

 avg_score = 0

 n_steps = 0

 print(f"... start training for {symbol} ...")

 # Train the agent

 """

87

 The n_games value selected from the learning rate value in the log and improved

value of the model.

 recommend: n_games >= 100

 """

 n_games = 100

 score_history = []

 for i in range(n_games):

 observation = env.reset()

 done = False

 score = 0

 while not done:

 action, prob, val = agent.choose_action(observation)

 observation_, reward, done, info = env.step(action)

 agent.remember(observation, action, prob, val, reward, done)

 n_steps += 1

 score += reward

 if n_steps % N == 0:

 agent.learn()

 observation = observation_

 # Save score history and calculate the average score

 # if score > -5000 and score < 5000:

 score_history.append(score)

 avg_score = np.mean(score_history[-50:]) # Average over the last 50 games

 # Save model if the performance has improved

 if avg_score > best_score and i > 5:

 best_score = avg_score

 agent.save_models()

 print(f"Episode {i} | Score: {score} | Avg Score: {avg_score} | Best Score:

{best_score}")

 # After training, get the model results on test data

 reporting_df = df_test.copy().reset_index(drop=True)

 # Apply the same scaling to the test data

 features = ['Open', 'High', 'Low', 'Close', 'Volume', 'VWAP']

 scaled_features = scaler.transform(reporting_df[features])

 reporting_df[features] = scaled_features

 long_probs = []

 short_probs = []

 for step in range(len(reporting_df)):

 item_0_T0 = df_mod.loc[step - 0, "Open"].item()

88

 item_1_T0 = df_mod.loc[step - 0, "High"].item()

 item_2_T0 = df_mod.loc[step - 0, "Low"].item()

 item_3_T0 = df_mod.loc[step - 0, "Close"].item()

 item_4_T0 = df_mod.loc[step - 0, "Volume"].item()

 item_5_T0 = df_mod.loc[step - 0, "VWAP"].item()

 obs = np.array([item_0_T0, item_1_T0, item_2_T0, item_3_T0, item_4_T0,

item_5_T0, 0.5])

 state = T.tensor(obs).float()

 # Load Model

 n_actions = env.action_space.n

 input_dims = env.observation_space.shape

 alpha = 0.0003

 model = ActorNetwork(n_actions, input_dims, alpha, symbol)

 model.load_state_dict(T.load(f'/content/tmp1/actor_torch_ppo_{symbol}',

weights_only=True))

 model.eval()

 dist = model(state)

 probs = dist.probs.detach().numpy()

 action = np.argmax(probs)

 long_probs.append(probs[0])

 short_probs.append(probs[1])

 # Add the buy/sell signal to df

 df_res = reporting_df[["Open", "Close_Price"]].copy()

 df_res["Returns"] = df_res["Close_Price"].pct_change()

 df_res["Longs"] = long_probs

 df_res["Shorts"] = short_probs

 df_res.loc[df_res["Longs"] >= 0.5, "Action"] = "Buy"

 df_res.loc[df_res["Longs"] < 0.5, "Action"] = "Sell"

 # Plot Buy/Sell Signals and Equity

 plot_signals_and_equity(df_res, original_df, symbol)

 # Call calculate_metrics to evaluate the model performance

 initial_capital = 2000 # e.g., $100,000

 perc_invest = 0.1 # 10% of capital per trade

 calculate_metrics(df_res, initial_capital, perc_invest, symbol)

stock_symbols =

["ADVANC.BK","INTUCH.BK","PTTEP.BK","BDMS.BK","MINT.BK","CPN.BK

","AOT.BK","TISCO.BK","SCC.BK","IVL.BK"]

for symbol in stock_symbols:

 df_train, df_test, df, df_mod, scaler = process_stock(symbol)

 train_and_test_agent(symbol, df_train, df_test, df_mod, df, scaler)

89

APPENDIX B

The code of Advantage Actor Critic (A2C) model

90

"""

1. Memory Management

Memory Class (Memory): The A2C agent employs a simpler memory class without

batch processing. It collects experiences and clears them after each learning update.

"""

class Memory:

 def __init__(self):

 self.states = []

 self.probs = []

 self.vals = []

 self.actions = []

 self.rewards = []

 self.dones = []

"""

2. Learning Update Mechanism

No Policy Clipping: A2C does not use policy clipping. The updates are more

straightforward and occur more frequently.

"""

actor_loss = - (new_probs * advantages.detach()).mean()

critic_loss = F.mse_loss(critic_value, returns)

total_loss = actor_loss + 0.5 * critic_loss

"""

3. Advantage Calculation

Temporal Difference (TD) Error: A2C typically uses the TD error for advantage

estimation, which is simpler and aligns with the actor-critic framework.

"""

for i in reversed(range(len(rewards))):

 if i == len(rewards) - 1:

 next_value = 0

 else:

 next_value = values[i + 1]

 delta = rewards[i] + self.gamma * next_value * (1 - dones[i]) - values[i]

 gae = delta + self.gamma * self.gae_lambda * (1 - dones[i]) * gae

 returns.insert(0, gae + values[i])

 advantages.insert(0, gae)

"""

4. Agent Class Differences

Simpler Initialization: Does not include policy_clip, reflecting a simpler update

mechanism.

"""

91

class Agent:

 def __init__(self, ..., batch_size=64, ...):

 # No policy_clip parameter

"""

5. Neural Network Architecture

Consistency in Networks: Both PPO and A2C implementations use similar neural

network architectures for the actor and critic networks.

"""

Actor Network

class ActorNetwork(nn.Module):

 def __init__(self, n_actions, input_dims, alpha, symbol, ...):

 # Network layers

Critic Network

class CriticNetwork(nn.Module):

 def __init__(self, input_dims, alpha, symbol, ...):

 # Network layers

"""

6. Hyperparameter Adjustments

Frequent Updates: May perform updates more frequently (e.g., after every step or

episode) without batching.

N = 10

Immediate Learning: The agent may learn after each episode or after a smaller number

of steps.

"""

if n_steps % N == 0:

 agent.learn()

 n_steps = 0 # Reset steps after each update

Single Update per Learning Call: The agent performs a single update without iterating

over multiple epochs.

By focusing on these aspects, we can appreciate how the A2C algorithm balances

efficiency and simplicity in policy optimization, impacting both the performance and

practicality of reinforcement learning solutions.

92

93

APPENDIX C

The code of Deep Q-Network (DQN) model

94

"""

1. Value-Based vs. Policy-Based Methods

Single Network Outputting Q-Values in DQN:

"""

class DeepQNetwork(nn.Module):

 def __init__(self, lr, n_actions, input_dims, ...):

 # Initialize network layers

 # ...

 def forward(self, state):

 # Compute Q-values for all possible actions

 actions = self.fc3(x)

 return actions

"""

2. Experience Replay Buffer

Replay Buffer (ReplayBuffer Class): Stores transitions (state, action, reward, next state,

done) to decorrelate data and improve sample efficiency.

"""

class ReplayBuffer:

 def __init__(self, max_size, input_shape):

 self.mem_size = max_size

 self.mem_cntr = 0

 self.state_memory = np.zeros((self.mem_size, *input_shape), dtype=np.float32)

 self.new_state_memory = np.zeros((self.mem_size, *input_shape),

dtype=np.float32)

 self.action_memory = np.zeros(self.mem_size, dtype=np.int64)

 self.reward_memory = np.zeros(self.mem_size, dtype=np.float32)

 self.terminal_memory = np.zeros(self.mem_size, dtype=np.bool_)

 def store_transition(self, state, action, reward, state_, done):

 index = self.mem_cntr % self.mem_size

 self.state_memory[index] = state

 self.new_state_memory[index] = state_

 self.reward_memory[index] = reward

 self.action_memory[index] = action

 self.terminal_memory[index] = done

 self.mem_cntr += 1

 def sample_buffer(self, batch_size):

 max_mem = min(self.mem_cntr, self.mem_size)

 batch = np.random.choice(max_mem, batch_size, replace=False)

95

 states = self.state_memory[batch]

 states_ = self.new_state_memory[batch]

 rewards = self.reward_memory[batch]

 actions = self.action_memory[batch]

 dones = self.terminal_memory[batch]

 return states, actions, rewards, states_, dones

"""

3. Target Network and Network Updates

Purpose: Stabilizes training by keeping a separate network (q_next) for calculating

target Q-values, which is updated less frequently.

"""

class DQNAgent:

 def __init__(self, ...):

 self.q_eval = DeepQNetwork(...)

 self.q_next = DeepQNetwork(...)

 # ...

 def replace_target_network(self):

 if self.learn_step_counter % self.replace_target_cnt == 0:

 self.q_next.load_state_dict(self.q_eval.state_dict())

"""

4. Action Selection Mechanism

Exploration vs. Exploitation: Balances exploration and exploitation by selecting

random actions with probability ϵ and the best action according to the Q-network

otherwise.

"""

class DQNAgent:

 def choose_action(self, observation):

 if np.random.random() > self.epsilon:

 # Exploit: Choose action with highest Q-value

 actions = self.q_eval.forward(state)

 action = T.argmax(actions).item()

 else:

 # Explore: Choose random action

 action = np.random.choice(self.action_space)

 return action

5. Loss Function and Optimization

DQN Loss Function (Mean Squared Error)

• Calculating Target Q-Values

q_target = rewards + self.gamma * q_next

• Computing Loss Between Predicted and Target Q-Values

loss = self.q_eval.loss(q_pred, q_target).to(self.q_eval.device)

96

6. Handling of Action Probabilities

For plotting purposes, set probability of selected action to 1

probs = np.zeros(env.action_space.n)

probs[action] = 1

long_probs.append(probs[0])

short_probs.append(probs[1])

7. Exploration Strategy

class DQNAgent:

 def decrement_epsilon(self):

 if self.epsilon > self.epsilon_min:

 self.epsilon -= self.eps_dec

 else:

 self.epsilon = self.epsilon_min

8. Agent Initialization Parameters

class DQNAgent:

 def __init__(self, gamma, epsilon, lr, n_actions, input_dims,

 batch_size, epsilon_end=0.01, mem_size=100000,

 eps_dec=1e-5, replace=1000, ...):

 # Initialize DQN-specific parameters

9. Training Loop Differences

while not done:

 action = agent.choose_action(observation)

 observation_, reward, done, info = env.step(action)

 agent.store_transition(observation, action, reward, observation_, done)

 agent.learn()

 observation = observation_

VITA

Name Mr. Warameth Nuipian

Thesis Title Dynamic Portfolio Management with Deep Reinforcement

Learning

Major Field Information and Data Science (International Program)

Biography House No. 14/268 Buathong Thani Park Ville 2, Moo2

Phimonrat Bang Bua Thong Nonthaburi 11110

I graduated with a Bachelor's degree in Computer

Engineering from Suranaree University of Technology

academic year 2022.

 I practice co-op at SCG as a full-stack developer.

After graduating, I applied for a new company and worked

in a front-end development position. I was responsible for

developing systems such as the web e-commerce platform

and LINE's e-commerce solution. I was also involved in

creative AI-related projects, working specifically on fine-

tuned Large Language Models (LLMs) for targeted

business applications.

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF ABBREVIATIONS
	Chapter 1 Introduction
	1.1Toward Reinforcement Learning in Portfolio
	1.2Objective
	1.3Scope
	1.4Outline of Thesis

	Chapter 2 Related Works
	2.1Artificial Intelligence Methodologies in Stock Market Analysis
	2.2Stocks prediction
	2.3Deep Learning
	2.4The application of Deep Learning
	2.5Fundamentals of Reinforcement Learning
	2.6Stock trading
	2.7Deep Reinforcement Learning for Stock Trading
	2.8Dynamic Allocation
	2.9Economic Analysis

	Chapter 3 Methodology And Experiment
	3.1Overview of Model Architecture
	3.2Data Preparation
	3.3Data Preprocessing
	3.4Hyperparameter Analysis
	3.5Actor and Critic Network
	3.6Deep Q-Network (DQN) Implementation
	3.7Model Training
	3.8Testing and Evaluation

	Chapter 4 Results
	4.1Proximal Policy Optimization
	4.2Advantage Actor-Critic
	4.3Deep Q-Network

	CHAPTER 5 CONCLUSION, DISCUSSION, AND FUTURE WORK
	5.1Conclusion
	5.2Discussion
	5.3Future Work

	References
	Appendix A
	Appendix B
	Appendix C
	VITA

